Skylar Tibbits demonstrating 4-D technology at a 2013 TED Conference. Photo: Ryan Lash

Just months after President Obama’s State of the Union address in which he described 3-D printing as having “the potential to revolutionize the way we make almost everything,” MIT architect and computer scientist Skylar Tibbits ushered in the next big innovation in manufacturing: 4-D printing. The video of Tibbits’s presentation at last week’s TED Conference in Long Beach, California is not yet available online, but in the 2011 TED Talk Can We Make Things That Make Themselves Tibbits spoke on the same subject.

So what is 4-D printing? Put simply, it is self-assembly technology. In some ways, 4-D printing is inspired by biological processes that are more complex and efficient than anything man-made. The idea is to create objects that “adapt to their environment” and through acts of self-assembly and repair mimic natural systems such as proteins.
According to Tibbits, there is an inherent ability in natural systems that “is extremely difficult to build into synthetic systems – the ability to ‘want’ or need something and know how to change itself in order to acquire it, or the ability to generate its own energy source.” 4-D printing attempts to imbue materials with “active characteristics” that are not found in the materials themselves.


Through the use of smart materials, 4-D printing allows an object generated by a 3-D printer to transform itself when activated by an energy source. The prototype in the video accompanying the buzz over 4-D printing uses water as that source. The hope is that in future 4-D objects may be activated by light, heat, electricity, or pressure.


The 3-D object in the video is made from a combination of synthetic polymers, some that expand when exposed to water and others that remain rigid, providing the object its shape. By precisely engineering the combination, the object is built to undergo a “predetermined geometrical transformation.” Using materials that essentially desire to react in a certain way, 4-D printing creates objects that assemble themselves.
The legal ramifications of 4-D printing may be hedged in by 3-D printing precedents. For a discussion of some of the intellectual property issues attendant 3-D printing, see Defending 3-D Printing and Clive Thompson on 3-D Printing’s Legal Morass. But 4-D printing will also create unique regulatory issues as new uses for self-assembly technology are adopted across industries. A multitude of government agencies will need to set standards and monitor compliance to ensure safety and frame liability issues that are sure to arise down the road.


–Katie Kuhn
Tagged with:

One Response to 4-D Printing: Creating Objects in the Fourth Dimension

  1. Sonal Patel says:

    Such an interesting topic, Katie! I’m still trying to wrap my brain around 3D printing…and here researchers are already on 4D printing. The rate of technological advancements is mind-blowing. I did a little extra research to better understand the essence behind 4D printing, and I think this quote sums it up nicely “Imagine if that desk you bought from Ikea could assemble itself.” These materials evolve after being printed. It seems fairly surreal, like my imagination is all of a sudden reality. However, that’s part of the cycle – years ago, no one would believe you could make bald men’s hair grow back and now you can (although, I’m sure some with poor success would dispute that).

    I think you hit the real issues, though. Just like gene patenting, 4D printing touches on new, unaddressed technological issues that will need to be dissected and addressed. But how does the legislature and courts address a technology that evolves on its own? Under patent law, this can pose tricky issues for infringement. A technology that can evolve on its own seems like it could be easily circumvented. More importantly, if the technology can evolve on its own, who is the infringer?