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ABSTRACT 

Differential privacy has taken the privacy community by storm.  

Computer scientists developed this technique to allow researchers to 

submit queries to databases without being able to glean sensitive 

information about the individuals described in the data.  Legal 

scholars champion differential privacy as a practical solution to the 

competing interests in research and confidentiality, and policymakers 

are poised to adopt it as the gold standard for data privacy.  It would 

be a disastrous mistake. 

This Article provides an illustrated guide to the virtues and 

pitfalls of differential privacy.  While the technique is suitable for a 

narrow set of research uses, the great majority of analyses would 

produce results that are beyond absurd—average income in the 

negative millions or correlations well above 1.0, for example. 

The legal community mistakenly believes that differential 

privacy can offer the benefits of data research without sacrificing 

privacy.  In fact, differential privacy will usually produce either very 

wrong research results or very useless privacy protections.  

Policymakers and data stewards will have to rely on a mix of 
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approaches—perhaps differential privacy where it is well suited to the 

task and other disclosure prevention techniques in the great majority of 

situations where it isn’t. 
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INTRODUCTION 

A young internist at the largest hospital in a midsized New 

England city is fretting.  She has just diagnosed an emergency room 

patient with Eastern Equine Encephalitis Virus (EEEV).  The 

diagnosis troubles the internist for a number of reasons.  Modern 

medicine offers neither a vaccine nor an effective treatment.1  

Moreover, the internist remembers that a colleague diagnosed a 

different patient with EEEV three weeks ago and knows that there 

was a third case a few weeks before that.  The disease is transmitted 

by mosquitos and is not communicable between humans.  However, an 

influx of cases would suggest that the local mosquito population has 

changed, putting the city’s inhabitants at risk.  So, the internist is 

fretting about whether the three cases that have come through the 

hospital in the last six weeks merit a phone call to the state and 

national centers for disease control. 

 

 1.  See Eastern Equine Encephalitis, Centers for Disease Control & Prevention, 

http://www.cdc.gov/EasternEquineEncephalitis/index.html (last updated Aug. 16, 2010). 
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To aid her decision, the internist decides to query a state 

health database to see how many cases of the rare disease have 

occurred in her city in each of the last eight years.  Recently, the state 

health database proudly adopted differential privacy as a means to 

ensure confidentiality for each of the patients in the state’s database. 

Differential privacy is regarded as the gold standard for data 

privacy.2  To protect the data subjects’ sensitive information, 

differential privacy systematically adds a random number generated 

from a special distribution centered at zero to the results of all data 

queries.  The “noise”—the random value that is added—ensures that 

no single person’s inclusion or exclusion from the database can 

significantly affect the results of queries.  That way, a user of the 

system cannot infer anything about any particular patient.  Because 

the state health department is also concerned about the utility of the 

research performed on the database, it has chosen the lowest level of 

noise recommended by the founders of differential privacy.  That is to 

say, the state has chosen the least privacy-protecting standard in 

order to preserve as much utility of the dataset as possible. 

When the internist submits her query, the database produces 

the following output:3 

 

Query = Count of Patients  

Diagnosed with EEEV within the City 

 

Year N   Year N 

2012 837.3  2007 5,019.3 

2011 211.3  2006 868.6 

2010 −794.6  2005 −2,820.6 

2009 −1,587.8  2004 2,913.9 

2008 2,165.5    

 

What is the internist to make of this data? 

 

 2.  See Raghav Bhaskar et al., Noiseless Database Privacy, in ADVANCES IN 

CRYPTOLOGY – ASIACRYPT 2011: 17TH INTERNATIONAL CONFERENCE ON THE THEORY AND 

APPLICATION OF CRYPTOLOGY AND INFORMATION SECURITY 215, 215 (Dong Hoon Lee & Xiaoyun 

Wang eds., 2011); Samuel Greengard, Privacy Matters, 51 COMMC’NS OF THE ACM, Sept. 2008, at 

17, 18; Graham Cormode, Individual Privacy vs Population Privacy: Learning to Attack 

Anonymization, in KDD’11 Proceedings of the 17th ACM SIGKDD INTERNATIONAL CONFERENCE 

ON KNOWLEDGE DISCOVERY AND DATA MINING 1253, 1253 (2011). But see Fida K. Dankar & 

Khaled El Emam, Practicing Differential Privacy in Health Care: A Review, 6 TRANSACTIONS ON 

DATA PRIVACY 35, 51–60 (2013) (noting theoretical limitations that differential privacy must 

address before it can be widely adopted for health care research). 

 3.  This is an actual instantiation of the differential privacy technique. The noise in 

this exercise was randomly drawn after setting 𝜀 = 𝑙𝑛(3) and allowing for 1,000 queries to the 

database. For a description of the technique, see infra Part I.B. 
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If the internist is unfamiliar with the theory behind differential 

privacy, she would be baffled by the respones. She would be especially 

puzzled by the negative and fractional values since people do not tend 

to be negative or partial.4 The internist is likely to conclude the 

responses are useless, or worse, that the system is seriously flawed. 

If the internist happens to be familiar with the theory behind 

differential privacy,  she would know that there is a very good 

chance—to be precise, a 37% chance—that the system is adding over 

1,000 points of noise in one direction or the other.  However, even 

knowing the distribution of noise that is randomly added to each cell, 

the internist has no hope of interpreting the response.  The true 

values could be almost anything.  It could be that the city has 

consistently diagnosed dozens of patients a year with EEEV, 

rendering her experience little reason for alarm.  Or it could be that 

the true values are all zero, suggesting that there is reason for 

concern.  The noise so badly dwarfs the true figures that the database 

query is a pointless exercise. 

This hypothetical is a representative example of the chaos that 

differential privacy would bring to most research database systems.  

And yet, differential privacy is consistently held up as the best 

solution to manage the competing interests in privacy and research.5 

Differential privacy has been rocking the computer science 

world for over ten years and is fast becoming a crossover hit among 

privacy scholars and policymakers.6  Lay descriptions of differential 

privacy are universally positive.  Scientific American promises that “a 

mathematical technique called ‘differential privacy’ gives researchers 

access to vast repositories of personal data while meeting a high 

standard for privacy protection.”7  Another journal, Communications 

of the ACM, describes differential privacy in slightly more detailed and 

equally appealing terms: 

Differential privacy, which first emerged in 2006 (though its roots go back to 2001), 

could provide the tipping point for real change. By introducing random noise and 

ensuring that a database behaves the same—independent of whether any individual or 

 

 4.  See MICROSOFT, DIFFERENTIAL PRIVACY FOR EVERYONE 4–5 (2012), available at 

http://www.microsoft.com/en-us/download/details.aspx?id=35409 (“Thus, instead of reporting one 

case for Smallville, the [query system] may report any number close to one. It could be zero, or ½ 

(yes, this would be a valid noisy response when using DP), or even −1.”). 

 5.  See Bhaskar et al., supra note 2, at 215; Cormode, supra note 2, at 1253–54; 

Greengard, supra note 2, at 18.  

 6.  Google Scholar has indexed over 2,500 articles on the topic. Google Scholar, 

www.scholar.google.com (last visited Apr. 12, 2014) (describing a search for “Differential 

Privacy”). 

 7.  Erica Klarreich, Privacy By the Numbers: A New Approach to Safeguarding Data, 

SCI. AM. (Dec. 31, 2012), http://www.scientificamerican.com/article/privacy-by-the-numbers-a-

new-approach-to-safeguarding-data. 
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small group is included or excluded from the data set, thus making it impossible to tell 

which data set was used—it’s possible to prevent personal data from being compromised 

or misused.8 

Legal scholars have also trumpeted the promise of differential 

privacy.  Felix Wu recommends differential privacy for some scientific 

research contexts because the query results are “unreliable with 

respect to any one individual” while still making it sufficiently reliable 

for aggregate purposes.9  Paul Ohm explains differential privacy as a 

process that takes the true answer to a query and “introduces a 

carefully calculated amount of random noise to the answer, ensuring 

mathematically that even the most sophisticated reidentifier will not 

be able to use the answer to unearth information about the people in 

the database.”10  And Andrew Chin and Anne Klinefelter recommend 

differential privacy as a best practice or, in some cases, a legal 

mandate to avoid the reidentification risks associated with the release 

of microdata.11 

Policymakers have listened.  Ed Felten, the chief technologiest 

for the Federal Trade Commission, praises differential privacy as “a 

workable, formal definition of privacy-preserving data access.”12  The 

developers of differential privacy have even recommended using the 

technique to create privacy “currency,” so that a person can 

understand and control the extent to which their personal information 

is exposed.13 

These popular impressions give differential privacy an 

infectious allure.  Who wouldn’t want to maximize database utility 

while ensuring privacy? 

The truth, of course, is that there is no simple solution to the 

eternal contest between data privacy and data utility.  As we will 

show, differential privacy in its pure form is a useful tool in certain 

 

 8.  Greengard, supra note 2, at 18. 

 9.  Felix T. Wu, Defining Privacy and Utility in Data Sets, 84 U. COLO. L. REV. 1117, 

1139–40 (2013). 

 10.  Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of 

Anonymization, 57 UCLA L. REV. 1701, 1756 (2010). Ohm acknowledges that differential privacy 

techniques add significant administration costs, and also risks denying the researcher an 

opportunity to mine the raw data freely to find useful patterns. Id. These are external critiques. 

Ohm does not present the internal critique of differential privacy theory that we develop here. 

See id. 

 11.  Andrew Chin & Anne Klinefelter, Differential Privacy as a Response to the 

Reidentification Threat: The Facebook Advertiser Case Study, 90 N.C. L. REV. 1417, 1452–54 

(2012). 

 12.  Ed Felten, What Does it Mean to Preserve Privacy?, TECH@FTC (May 15, 2012, 4:47 

PM), http://techatftc.wordpress.com/2012/05/15/what-does-it-mean-to-preserve-privacy. 

 13.  See Frank D. McSherry, Privacy Integrated Queries: An Extensible Platform for 

Privacy-Preserving Data Analysis, in SIGMOD’09: PROCEEDINGS OF THE 2009 ACM SIGMOD 

International Conference on Management of Data 19, 25 (2009); Klarreich, supra note 7. 
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narrow circumstances.  Unfortunately, most research occurrs outside 

of those circumstances, rendering a pure form of differential privacy 

useless for most research.  To make differential privacy practical for 

the vast majority of data research, one would have to diverge  

significantly from differential privacy’s pure form. 

Not surprisingly, this is the direction in which advocates of 

differential privacy have gone.14  It is the only way to go if one harbors 

hopes for general application of the technique.  But the only way to 

convert differential privacy into a useful tool is to accept and adopt a 

range of compromises that surrender the claim of absolute “ensured” 

privacy.  In other words, a useful version of differential privacy is not 

differential privacy at all.  It is a set of noise-adding practices 

indistinguishable in spirit from other disclosure prevention techniques 

that existed well before differential privacy burst onto the scene.  

Thus, differential privacy is either not practicable or not novel. 

This Article provides a comprehensive, but digestible, 

description of differential privacy and a study and critique of its 

application.  Part I explains the age-old tension between data 

confidentiality and utility and shows how differential privacy strives 

to thread the needle with an elegant solution.  To this end, Part I 

recounts a brief history of the development of differential privacy and 

presents a successful application of differential privacy that 

demonstrates its promise. 

Part II explores the many contexts in which differential privacy 

cannot provide meaningful protection for privacy without sabotaging 

the utility of the data.  Some of the examples in this section are lifted 

directly from the differential privacy literature, suggesting, at least in 

some cases, that the proponents of differential privacy do not 

themselves fully understand the theory.  The most striking failures of 

differential privacy (correlations greater than 1, average incomes in 

the negative millions) track some of the most general, common uses of 

data.  Part II demonstrates clearly that differential privacy cannot 

serve as the lodestar for the future of data privacy. 

Part III conducts a postmortem.  What went wrong in the 

applications of differential privacy described in Part II?  Looking 

forward, how can we know in advance whether differential privacy is a 

viable tool for a particular research problem?  The answers provide 

insight into the limitations of differential privacy’s theoretical 

underpinnings.  These limitations can point researchers in the right 

direction, allowing them to understand when and why a deviation 

 

 14.  See Bhaskar et al., supra note 2, at 215–16; Cynthia Dwork & Adam Smith, 

Differential Privacy for Statistics: What We Know and What We Want to Learn, 1 J. PRIVACY & 

CONFIDENTIALITY 135, 139 (2009). 
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from the strict requirements of differential privacy is warranted and 

necessary.  We also identify and correct some misinformed legal 

scholarship and media discussion that give unjustified praise to 

differential privacy as a panacea. 

The Article concludes with a dilemma.  On one hand, we praise 

some recent efforts to take what is good about differential privacy and 

modify what is unworkable until a more nuanced and messy—but 

ulitimately more useful—system of privacy practices are produced.  

On the other hand, after we deviate in important respects from the 

edicts of differential privacy, we end up with the same disclosure risk 

principles that the founders of differential privacy had insisted needed 

to be scrapped.  In the end, differential privacy is a revolution that 

brought us more or less where we started. 

I. WHAT IS DIFFERENTIAL PRIVACY? 

Protecting privacy in a research database is tricky business.  

Disclosure risk experts want to preserve many of the relationships 

among the data and make them accessible.15  This is a necessary 

condition if we expect researchers to glean new insights.  However, the 

experts also want to thwart certain types of data revelations so that a 

researcher who goes rogue—or who was never really a researcher to 

begin with—will not be able to learn new details about the individuals 

described in the dataset.  How to preserve the “good” revelations while 

discarding the “bad” ones is a puzzle that has consumed the attention 

of statisticians and computer scientists for decades.16 

When research data sets are made broadly available for 

research purposes, they usually take one of two forms.17  Sometimes 

 

 15.  See George T. Duncan & Sumitra Mukherjee, Optimal Disclosure Limitation 

Strategy in Statistical Databases: Deterring Tracker Attacks through Additive Noise, 95 J. OF THE 

AM. STAT. ASS’N 720, 720 (2000); Krishnamurty Muralidhar et al., A General Additive Data 

Perturbation Method for Database Security, 45 MGMT. SCI. 1399, 1399–1401 (1999); 

Krishnamurty Muralidhar & Rathindra Sarathy, Data Shuffling—A New Masking Approach for 

Numerical Data, 52 MGMT. SCI. 658, 658–59 (2006) [hereinafter Muralidhar & Sarathy, Data 

Shuffling]; Rathindra Sarathy et al., Perturbing Nonnormal Confidential Attributes: The Copula 

Approach, 48 MGMT. SCI. 1613, 1613–14 (2002); Mario Trottini et al., Maintaining Tail 

Dependence in Data Shuffling Using t Copula, 81 STAT. & PROBABILITY LETTERS 420, 420 (2011). 

 16.  “Statistical offices carefully scrutinize their publications to insure that there is no 

disclosure, i.e., disclosure of information about individual respondents. This task has never been 

easy or straightforward.” I. P. Fellegi, On the Question of Statistical Confidentiality, 67 J. AM. 

STAT. ASS’N 7, 7 (1972). 

 17.  These two popular forms do not exhaust the possibilities for data release, of course. 

Sometimes government agencies release summary information, such as a table, taken from more 

detailed data. These releases are neither microdata nor interactive data. See JACOB S. SIEGEL, 

APPLIED DEMOGRAPHY: APPLICATIONS TO BUSINESS, GOVERNMENT, LAW AND PUBLIC POLICY 175 

(2002). 
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the disclosure risk expert prepares and releases  

microdata—individual-level datasets that researchers can download 

and analyze on their own.  Other times, the expert prepares an 

interactive database that is searchable by the public.  An outside 

researcher would submit a query or analysis request through a user 

interface that submits the query to the raw data.  The interface 

returns the result to the outside researcher (sometimes after applying 

a privacy algorithm of some sort).  The techniques for preserving 

privacy with these alternative research systems are quite different, 

not surprisingly.  The debate over how best to prepare microdata is 

lively and rich.18 

The public conversation about interactive databases, in 

contrast, is underdeveloped.19  Outside of the technical field, hopeful 

faith in differential privacy dominates the discussion of query-based 

privacy.20  This Part first explains the problem differential privacy 

seeks to solve.  It is not immediately obvious why a query-based 

research system needs any protection for privacy in the first place, 

since outside researchers do not have direct access to the raw data; 

but even an interactive database can be exploited to expose a person’s 

private information.  Next, we demystify differential privacy—the 

creative solution developed by Microsoft researcher Cynthia  

Dwork—by working through a successful example of differential 

privacy in action. 

A. The Problem 

Six years ago, during a Eurostat work session on statistical 

data confidentiality in Manchester, England, Cynthia Dwork, an 

energetic and highly respected researcher at Microsoft, made a 

startling statement.21  In a presentation to the world’s statistical 

 

 18.  One popular form of microdata release is the “de-identified” public database. De-

identification involves the removal of all personally identifiable information and, sometimes, the 

removal of other categories of information that can identify a person in combination. HIPAA, for 

example, identifies 18 variables as personally identifiable information. 45 C.F.R.  

§ 164.514(b)(2)(i)(A)–(R). Disclosure experts have long understood that de-identification cannot 

guarantee anonymization, but this subtlety is lost in news reporting. For a discussion of 

reidentification risk and its treatment in the popular press, see Jane Yakowitz, Tragedy of the 

Data Commons, 25 HARV. J.L. & TECH. 1, 36–37 (2011). 

 19.  Cf. Cynthia Dwork, A Firm Foundation for Private Data Analysis, 54 COMMC’NS OF 

THE ACM 86, 89 (2011) (discussing the limited way the public uses interactive databases). 

 20.  See Chin & Klinefelter, supra note 11, at 1452–53; Greengard, supra note 2, at 18; 

Ohm, supra note 10, at 1756–57; Wu, supra note 9, at 1137–38; Klarreich, supra note 7.  

 21.  Cynthia Dwork, Presentation before the Eurostat Work Session on Statistical Data 

Confidentiality: Differentially Private Marginals Release with Mutual Consistency and Error 

Independent of Sample Size (Dec. 17–19, 2007), available at http://www.unece.org/ 

fileadmin/DAM/stats/documents/2007/12/confidentiality/wp.19.e.ppt). 
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privacy researchers, Dwork announced that most, if not all, of the data 

privacy protection mechanisms currently in use were vulnerable to 

“blatant non-privacy.”22 

What Dwork meant by “blatant non-privacy” comes from a 

2003 computer science publication by Irit Dinur and Kobbi Nissim.23  

Dinur and Nissim showed that an adversary—that is, a malicious 

false researcher who wishes to expose as much personal information 

as possible by querying a database—could reconstruct a binary 

database (a database containing only responses consisting of “0”s and 

“1”s) if they had limitless opportunity to query the original database, 

even if noise of magnitude ±E is added to the results of the queries, as 

long as 𝐸 is not too large.24  Dinur and Nissim defined “non-privacy” as 

a condition in which an adversary can accurately expose 99% of the 

original database through queries.25 

To understand how such an attack works, suppose a database 

contains the HIV status of 400 patients at a particular clinic.  The 

adversary knows that 𝐸 = 2, meaning that the noise added or 

subtracted is no greater than 2. The adversary knows that  for any 

response he receives from the system, the true value is within ±2 of 

the response.  Now assume that the adversary issues the query, “How 

many of the first 20 individuals in the database are HIV positive?”  

For the sake of argument, let us assume that the true answer to this 

query is 5.  And assume that the system adds −2 to the true answer 

and responds with 3.  Now the adversary asks: “How many of the first 

21 individuals in the database are HIV positive?”  Assume that the  

twenty-first individual is HIV positive, and the true answer to this 

query is 6.  The system adds +2 to the true answer and responds with 

8.  From the response to the first query, the adversary knows that the 

true answer could not possibly be greater than 5.  From the response 

to the second query, the adversary knows that the true answer could 

not possibly be less than 6.  So, he can correctly conclude that: (a) the 
 

 22.  Id. (emphasizing this point on slide 24 of the accompanying PowerPoint 

presentation); see also Cynthia Dwork, Ask a Better Question, Get a Better Answer: A New 

Approach to Private Data Analysis, in Database Theory – ICDT 2007: 11th International 

Conference 18, 18–20 (Thomas Schwentick & Dan Suciu eds., 2006) (describing the Dinur-Nissim 

“blatant non-privacy” vulnerabilities and proposing differential privacy as a solution).  

 23.  Irit Dinur & Kobbi Nissim, Revealing Information While Preserving Privacy, in 

Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database 

Systems 202, 204, 206 (2003). 

 24.  To be precise, if the largest amount of noise added is  𝐸, and if  𝐸 is less than the 

number of data subjects, Dinur and Nissim showed that an adversary who could make unlimited 

numbers of queries could reconstruct a database so that the new database differed from the old 

database in no more than 4 𝐸 places. Thus, whenever  𝐸 <𝑛/400, the adversary will be able to 

construct a database that is accurate in 99% of the values, satisfying “blatant non-privacy.” Id. at 

205–07. 

 25.  Id. at 204. 
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twenty-first individual must be HIV positive, and (b) there are 5 HIV 

positive cases among the first 20 individuals. 

There are 2400 possible queries of this sort, and if an adversary 

used all of them, he could correctly reconstruct 99% of the HIV 

statuses.  Dinur and Nissim also showed that even under more 

realistic scenarios where the number of queries is bounded, and even 

when the noise added occasionally exceeds 𝐸, an adversary can still 

recreate a rather accurate database as long as 𝐸 is not too large and 

the value of 𝐸 is known.26 

These results provide important theoretical foundations for 

disclosure risk because they show that moving from a microdata 

release to a query system does not automatically assure privacy.  A 

query system must be designed in a thoughtful way.  However, from a 

practical perspective, the consequences of the Dinur-Nissim discovery 

are not as serious as they seem at first glance.  For instance, if the 

selection of the noise function, 𝐸, is large enough, it can thwart an 

adversary’s attempt to construct a nearly accurate database no matter 

how many queries he submits.27 

But the most helpful limitation is the natural bound on the 

number of queries that a researcher can submit.  Even for small 

databases, like the HIV database described above, an adversary would 

not be able to issue all of the queries necessary to attempt a full 

database reconstruction because of the sheer number of queries 

required.  A database with 400 subjects would require 2400 queries.  To 

give a sense of scale, 2332.2 is a googol, which is greater than the 

number of atoms in the observable universe.28 

In addition to these natural limitations of the adversary, a 

query system may limit the total number of queries issued to the 

database or impose other restrictions when responding to queries.29  

The data producer can also withhold information about the amount of 

noise added.  Once an adversary is constrained in the number of query 

submissions, an appropriate selection of noise can virtually guarantee 

 

 26.  Conditioned on the fact that 𝐸 is no larger than √n. Id. at 206. 

 27.  For example, 𝐸 = 50 would avoid blatant non-privacy for a small database with 1000 

subjects because the reconstructed database would be off in 4 × 50 = 200 positions, rendering the 

database correct in only 80% of the values. 

 28.  See John D. Cook, There Isn’t a Googol of Anything, Endeavour (Oct. 13, 2010), 

http://www.johndcook.com/blog/2010/10/13/googol; Googol, Wolfram Math World, 

http://mathworld.wolfram.com/Googol.html (last visited Jan. 29, 2014) (discussing the size of a 

google). 

 29.  For example, theoretically nothing prevents a researcher from querying “what is the 

HIV status of subject #2502?” See Klarreich, supra note 7 (noting that differentially private data 

release algorithms allow adversaries to ask “practically any question about a database,” but 

“blur[s]” private information with noise). 
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that a reconstruction attack will not work.30  The Dinur-Nissim attack 

would also fail if the administrator were to change the values in the 

original database and use the modified database to respond to all 

queries.31 

Reconstruction attacks are not the only privacy threats that 

concern data providers.  If an adversary can accurately figure out one 

highly sensitive attribute of a single data subject, such as an HIV 

diagnosis, the revelation would be disconcerting, even if the rest of the 

original database remained unknown.  Meanwhile, data providers 

might shrug at a 99% accurate candidate database constructed by an 

“adversary” who guessed that everybody in the database had a 

negative HIV status.32 

Thus, disclosure risk experts have long understood that the 

best approach to protecting privacy is one that is contextually 

sensitive.33  Privacy risks fall disproportionately on data subjects 

whose demographics or other characteristics make them unusual.34  

Disclosure risk experts traditionally employ a range of techniques to 

protect outlier data subjects and highly sensitive attributes.  Most of 

the time, for the sake of simplicity and ease of application, a database 

query system will add some random noise to the results generated by 

a particular query, and that noise usually falls within some bounded 

range.35  That way, the utility of the response is not swamped by the 

noise added at the end.  The disclosure limitation community was 

 

 30.  Since a realistic adversary who is “bounded” or constrained by his computational 

ability will be thwarted by noise that is greater than √n, large databases require comparatively 

less noise to overcome the reconstruction attack. For example, a database with 100 subjects 

would require noise up to ±10 to avoid such an attack (10% of the total number of subjects), but a 

database with 1,000,000 requires noise only up to ±1000 (a tenth of one percent of the total 

number of subjects). See Dinur & Nissim, supra note 23, at 206. 

 31.  Since the response to all queries are provided from the modified database, the best 

the adversary can hope to do is to reconstruct the modified database but not the original 

database.  

 32.  A 99% accurate reconstruction is much more impressive when the binary outcomes 

are approximately equally likely (each outcome has probability approximately 50%). See Cynthia 

Dwork, The Analytic Framework for Data: A Cryptographic View, Microsoft Research 5 (2013), 

available at http://cusp.nyu.edu/wp-content/uploads/2013/06/chapter11v2.pdf. 

 33.  See Tore Dalenius, Towards a Methodology for Statistical Disclosure Control, 5 

STATISTISK TIDSKRIFT 429, 432–33 (1977) (explaining that the context of the data refers to “[t]he 

frame: {O}F;” “[t]he data associated with the objects in the frame: I; C; X, Y, . . .,Z;” “[t]he 

statistics released from the survey: S;” and “[t]he extra-objective data: E” and noting that “[i]f the 

release of the statistics S makes it possible to determine the value DK more accurately than is 

possible without access to S, a disclosure has taken place”). 

 34.  See Krishnamurty Muralidhar & Rathindra Sarathy, Security of Random Data 

Perturbation Methods, 24 ACM TRANSACTIONS ON DATABASE SYS. 487, 488 (1999); Rathindra 

Sarathy & Krishnamurty Muralidhar, The Security of Confidential Numerical Data in 

Databases, 13 Info. Sys. Res. 389, 393 (2002). 

 35.  See, e.g., Lawrence H. Cox & John A. George, Controlled Rounding for Tables with 

Subtotals, 20 ANNALS OPERATIONS RES. 141, 141 (1989); Dalenius, supra note 33, at 441. 
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interested in developing alternatives to these common noise-adding 

practices when Dwork made her provocative presentation.36 

The holistic approach was unsatisfying to Dwork.  She 

criticized the popular approaches for being “syntactic” and context 

driven.37  Instead, Dwork insisted that the practical compromises were 

not necessary.  One could design a query system that avoids even the 

theoretical risks of query attacks, or, rather, allows the theoretical 

risks only within a predefined range of tolerances. 

B. The Birth of Differential Privacy 

Differential privacy does two important things at once.  First, it 

defines a measure of privacy, or rather, a measure of disclosure—the 

opposite of privacy.38  And second, it allows data producers to set the 

bounds of how much disclosure they will allow.39  For Dwork, if, based 

on a query result—or a series of results—an adversary can improve 

his prediction of a person’s attributes, then any such improvement in 

the prediction represents a disclosure.40 

In its purest form, this definition is too strong to be usable in 

settings where disclosure is strictly prohibited.41  It obliterates 

research utility.  Suppose, for example, an adversary has external 

knowledge that a particular person, Claire, is female.  Now, any 

research describing gender differences along various dimensions 

would improve his predictions of Claire’s attributes.  While his best 

guess at her income would have been the average US income in the 

absence of better information, his prediction would be improved 

(though still not good) by learning that women earn less, on average, 

than men do.  If disclosure were defined this broadly, every published 

statistic would violate privacy. 

Dwork avoided this absurdity by proposing an elegant solution: 

differential privacy ensures that the presence or absence of an 
 

 36.  See, e.g., Muralidhar et al., supra note 15, at 1399; Muralidhar & Sarathy, Data 

Shuffling, supra note 15, at 658; D.B. Rubin, Discussion of Statistical Disclosure Limitation, 9 J. 

Official Stat. 461, 461 (1993).  

 37.  Cynthia Dwork, An Ad Omnia Approach to Defining and Achieving Private Data 

Analysis, in PRIVACY, SECURITY, AND TRUST IN KDD–PINKDD 2007, at 1, 1 (F. Bonchi et al. eds., 

2008).  

 38.  See id. at 5–6; Dwork, A Firm Foundation for Private Data Analysis, supra note 19, 

at 91; Cynthia Dwork, Differential Privacy, in 2 Proceedings of the 33rd International 

Conference on AUTOMATA, LANGUAGES AND PROGRAMMING 1, 8–9 (Michele Bugliesi et al. eds., 

2006). 

 39.  Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis, 

supra note 37, at 6; Dwork, Differential Privacy, supra note 38, at 9.  

 40.  See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data 

Analysis, supra note 37, at 6; Dwork, Differential Privacy, supra note 38, at 4.  

 41.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 89–90. 
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individual does not significantly affect the responses that the system 

provides.42 More precisely, differential privacy disclosure occurs when, 

for any individual, the probability that a query will return a particular 

result in the presence of that individual in the database differs from 

the probability that a query would return that same result in the 

absence of that individual.43  The measure of the disclosure for a 

particular query to a particular individual is the ratio of those two 

probabilities—the probabilities that the query system would return 

the result with, and then without, the individual’s data.44  Ideally, this 

ratio would be one, allowing no disclosure at all.  But since this is 

impossible to achieve if the responses are to be useful, the data 

curator can select some small level of disclosure that society is willing 

to tolerate.  The closer to one the ratio is, the less disclosure has taken 

place.45 

For a query system to satisfy differential privacy, the system 

must add noise that ensures it only returns results such that the 

disclosure for everybody stays within certain predetermined bounds.46 

Consider this example: Suppose a data producer had made 

differential privacy commitments, promising that the ratio of 

probabilities for all possible people and all possible values of return 

results would never be less than 1/2 or more than 2.  And suppose that 

the database contains the wealth for the year 2010 for all Americans 

whose primary residence is in the state of Washington.  An adversary 

submits the query, “How many people have more than $1 million in 

wealth?” 

Suppose the true answer is 226,412, and one of those 

millionaires is Bill Gates.47  The query system will apply some noise 

randomly drawn from a distribution, but what should that 

distribution be?  Well, it must be drawn such that it does not diverge 

too greatly from the distribution of responses if the database didn’t 

include Bill Gates.  Removing Bill Gates from the database, the 

answer to the query is 226,411, and noise from the same distribution 

is randomly drawn to apply to that number instead.  The query 

system must use a distribution that ensures that when we look at the 

probability of all possible returned results based on the true result or 

 

 42.  Id.  

 43.  Id. at 89. 

 44.  Id. 

 45.  See id. at 87. 

 46.  See id. 

 47.  In 2010, the true figure was around 226,000. John Cook, Millionaires to Double in 

Washington, but Will that Spark Angel Investment?, GEEKWIRE (May 4, 2011, 2:04 PM), 

http://www.geekwire.com/2011/number-millionaires-double-washington-spark-angel-investment. 
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the result with a record deleted, the distributions are not too far apart.  

Figure 1 plots the distribution that has this quality. 

 

Figure 1—Distribution of Query Response if the  

True Answer Contains, or Does Not Contain, Bill Gates 

 

Reflect for a moment on the reasons that we want the query 

system to produce similar results whether Bill Gates is or is not in the 

query system.  Most people know perfectly well that Bill Gates lives in 

Seattle and is a billionaire, so they would not be surprised to discover 

that he is included in the count of millionaires.  But suppose an 

eccentric adversary knew the identity of every millionaire in 

Washington except Bill Gates.  Suppose also that he knew that 

everybody except the 226,411 millionaires and Bill Gates were not 

millionaires.  The only thing he does not know is whether Bill Gates 

has at least $1 million.  If this adversary is clever, and if the data 

producer had used bounded noise, the adversary might be able to 

improve his inference that the noise centers around 226,411 

(suggesting Gates is not a millionaire) or around 226,412 (suggesting 

that he is a millionaire).48  Differential privacy ensures that the 

 

 48.  For instance, the data producer may have added noise by selecting from random 

integer values in the range ±10. Hence, if the response to the query is 226,401, the adversary 
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system does not produce answers that behave very differently under 

either case. 

Mathematically, the promise of differential privacy looks like 

this: 

Given a database 𝑋, and a hypothetical database 𝑋∗ that differs 

from 𝑋 by the deletion or addition of just one record, differential 

privacy ensures that49 
1

𝑒𝜀
≤

𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑟|𝑋)

𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑟|𝑋∗)
≤ 𝑒𝜀 

The data producer gets to choose 𝜀, and the choice of 𝜀 will 

determine how much disclosure (as defined by Dwork and described 

above) the system will tolerate.  The reason for the use of 𝑒 

(2.71828 . . . ) is that by setting up the differential privacy promise 

this way, it corresponds precisely with a distribution curve already 

well known to statisticians—the Laplace distribution curve.50  Laplace 

distribution has precisely the quality we are looking for: when the 

curve is shifted over a certain amount, the ratio of probabilities for the 

original and shifted curve stay within a predesignated boundary. 

To employ differential privacy, a data curator would do the 

following: 

(1) Select 𝜀.  The smaller the value, the greater the privacy. 

(2) Compute the response to the query using the original data.  

Let 𝑎 represent the true answer to the query. 

(3) Compute the global sensitivity (∆𝑓) for the query.  Global 

sensitivity is determined by answering the following: “Assume that 

there are two databases 𝑋 and 𝑋∗ which differ in exactly one record 

and that the answer to this query from database 𝑋 is 𝑎 and that from 

database 𝑋∗ is 𝑎∗.  For any two such databases 𝑋 and 𝑋∗ in the 

universe of all possible databases for the queried variable, what is the 

maximum possible absolute difference between 𝑎 and 𝑎∗?”51 According 

 

knows that Bill Gates is not a millionaire; if the response to the query is 226,422, the adversary 

knows that Bill Gates is a millionaire. 

 49.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90; 

Rathindra Sarathy & Krishnamurty Muralidhar, Some Additional Insights on Applying 

Differential Privacy for Numeric Data, in LECTURE NOTES IN COMPUTER SCIENCE: PRIVACY IN 

STATISTICAL DATABASES 210, 211 (Josep Domingo-Ferrer & Emmanouil Magkos eds., 2011) 

[hereinafter Sarathy & Muralidhar, Additional Insights on Applying Differential Privacy]. 

 50.  The probability density function of a Laplace random variable is 𝑓(𝑥) = (
1

𝑏
) 𝑒−

|𝑥− 𝜇|

𝑏 . 

 51.  In order to be able to compute ∆𝑓, a necessary step when implementing differential 

privacy, the data must have strict upper and lower bounds. Rathindra Sarathy & Krishnamurty 

Muralidhar, Evaluating Laplace Noise Addition to Satisfy Differential Privacy for Numeric Data, 

4 TRANSACTIONS ON DATA PRIVACY 1, 4 (2011) [hereinafter Sarathy & Muralidhar, Evaluating 

Laplace Noise]; Sarathy & Muralidhar, Additional Insights on Applying Differential Privacy, 

supra note 49; Larry Wasserman & Shuheng Zhou, A Statistical Framework for Differential 
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to Dwork and Smith, “The sensitivity essentially captures how great a 

difference (between the value of 𝑓on two databases differing in a 

single element) must be hidden by the additive noise generated by the 

curator.”52  If the noise can protect this difference, then of course, all 

other, smaller, differences will also be protected.  This is the key to 

differential privacy’s protection. 

(4) Generate a random value (noise) from a Laplace 

distribution with mean = 0 and scale parameter 𝑏 =  ∆𝑓/𝜀.  Let 𝑦 

represent the randomly generated noise. 

(5) Provide the user with response 𝑅 = 𝑎 + 𝑦.  The noise added 

(𝑦) is unrelated to the characteristics of the actual query (number of 

observations in the database or query and the value of the true 

response) and is determined exclusively by ∆𝑓 and 𝜀.53 

Observe this as applied to the example of the number of 

millionaires in Washington.  The data producer wanted the ratio of 

responses to stay within 1/2 and 2 when a person’s information was 

included or removed from the database.  Therefore, the data producer 

selected 𝜀 = 𝑙𝑛(2).54 The global sensitivity here has to be one.  Since the 

query asks for a headcount, the greatest difference any single person 

can make to the count is one. 

We know that the true answer to the query is 226,412.  We do 

not know what answer the data query system will produce because it 

takes the true answer and adds some randomly chosen noise from a 

Laplace distribution.  But we can look at the range of responses such a 

system produces.  Figure 2 plots the chance of seeing any particular 

response. 

 

Privacy, 105 J. Am. Stat. Ass’n 375, 378–79 (2010) (noting that "it is difficult to extend 

differential privacy to unbounded domains”). 

 52.  Dwork & Smith, supra note 14, at 140. 

 53.  “[O]ur expected error magnitude is constant, independent of 𝑛.” Dwork, A Firm 

Foundation for Private Data Analysis, supra note 19, at 92. 

 54.  Surely you remember from precalculus class that eln (2) = 2, right?  
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Figure 2—Number of Millionaires in Washington State 

𝜺 = ln (2) ∆𝒇 = 𝟏 

 
 

As you can see, differential privacy works quite well here.  The 

query system produces results that tend to provide utility—the 

responses are very unlikely to be too far off from the true answer—and 

the system also insures against disclosure.  This is a true win-win. 

C. The Qualities of Differential Privacy 

Much of this Article is devoted to illuminating the defects of 

differential privacy, but we do not want the reader to walk away 

without an understanding of its virtues.  As the millionaires example 

demonstrates, Dwork’s measure of disclosure makes the issue of 

auxiliary information easy to handle and potentially very privacy 

protecting.  Even if the adversary knows everything in the database 

except one particular piece of information, differential privacy assures 

that the responses from the database—in the presence or absence of 

this record—are indistinguishable within a factor of 𝑒𝜀.  If we have 

confidence that this factor is small enough to be considered safe, then 

we need not speculate about what a user’s motives are or how much 

information he already has.  He can be a super-adversary, knowing 

almost everything, and his efforts will still be frustrated. 
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Differential privacy also protects against possible inferences 

based on a person’s absence from a database.55  A person’s absence 

might reveal something very important.  To see why this is so, return 

to the example of the income data for Washington residents.  This 

time let us assume that the adversary’s target is Larry Page, who does 

not live in Washington—and thus would not be in the database.  If the 

last piece of information that the adversary needed about Larry Page 

was whether or not he lived in Washington, and the adversary also 

knew all of the 226,412 millionaires in Washington, then the fact that 

noise is not centered around 226,413 would reveal to the adversary 

that Larry Page does not live in Washington, and a disclosure would 

occur. 

Dwork consciously made some overt choices and sacrifices 

when she developed differential privacy.  For one thing, as Dwork 

herself has noted, microdata releases cannot be prepared in a way 

that strictly complies with differential privacy, so the standard applies 

only to query systems.56  Also, much rides on the query designer’s 

selection of 𝜀. The smaller it is, the more privacy protecting, but also 

the more utility damaging since the noise added will tend to be 

larger.57  Therefore, we must rely on the judgment of the data 

producer to select an appropriate 𝜀 that strikes the right bargain 

between privacy and utility.58  This selection is all the more difficult 

because, whatever selection the data producer chooses for the system’s 

overall privacy protections (𝜀), he must also decide how many queries 

researchers are allowed to make.  Because the effects of successive 

queries on disclosure are cumulative, the data producer will have to 

divide his choice of 𝜀 by the anticipated number of queries.59 

 

 55.  See supra notes 42–43 and accompanying text. 

 56.  The definition of differential privacy “trivially rules out the subsample-and-release 

paradigm discussed: For an individual x not in the dataset, the probability that x’s data is 

sampled and released is obviously zero; the multiplicative nature of the guarantee ensures that 

the same is true for an individual whose data is in the dataset.” Dwork, A Firm Foundation for 

Private Data Analysis, supra note 19, at 91. Thus, the very release of microdata violates DP 

requirements. In addition, the application of differential privacy is a function of the query 

submitted, and since microdata is released so that a person may use it to issue any and all 

queries, the promises of differential privacy cannot be kept. Sarathy & Muralidhar, Evaluating 

Laplace Noise, supra note 51, at 3. To meet the differential privacy standard, even if it were 

possible, the data producer would have to add so much noise that the database would be 

meaningless. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92. 

 57.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91–92. 

 58.  As we will demonstrate later in this Article, a data curator who wants to preserve 

even a small amount of data utility will have to choose a fairly large 𝜀, allowing a generous 

tolerance for disclosure. See discussion infra Part III.D.  

 59.  To understand why this is so, let’s revisit the Bill Gates example. The adversary 

knows that 226,411 individuals have more than a million dollars in personal wealth. Issuing the 

query “How many individuals in Washington State have more than a million dollars?” may 

result in a response that has twice the probability that the true answer is 226,411 compared to 
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Finally, in defining disclosure as she does, Dwork implicitly 

rejects other definitions of disclosure that would disclose families or 

groups.60  Dwork ensures that an individual is not distinguishable 

from the results of a query, but she does not build in protections 

against revelations for families or subgroups.61  What differential 

privacy can promise is that “the ability of an adversary to inflict harm 

(or good, for that matter)—of any sort, to any set of people—should be 

essentially the same, independent of whether any individual opts in 

to, or opts out of, the dataset.”62  For most research applications, this 

distinction between individuals and groups make sense.63  After all, a 

research study finding that smoking causes cancer says something 

about every person who smokes—it allows an adversary to predict 

with better accuracy whether a particular smoker (whether they were 

in the research database or not) has cancer.  But the adjustment to the 

adversary’s prediction about that particular smoker would be based on 

group phenomena and not on individualized information about this 

particular smoker.64 

Nevertheless, some data producers may be concerned about 

family and group disclosures.  Some group disclosures—like whether a 

family has a congenital disease—might be more important than 

protecting against the theoretical possibility that somebody might not 
 

the probability that the true answer is 226,412. The adversary can also issue the additional 

query “How many millionaires live in the 98039 zip code?,” which happens to be Bill Gates’s zip 

code. Jeanne Lang Jones, The Sound’s Wealthiest Zip Codes, PUGET SOUND BUS. J. (Feb. 6, 2005, 

9:00 PM), http://www.bizjournals.com/seattle/stories/2005/02/07/focus1.html. Since the adversary 

has information on all millionaires in Washington State, we have to assume that he also knows 

all the million dollar income earners (other than Bill Gates) who live in this zip code. The 

response to this query may result in a response that, as in the previous query, suggests that the 

probability that Bill Gates is a millionaire is twice as likely as Bill Gates not a millionaire. Since 

the Laplace noise has been added independently, taken together, these two results provide the 

adversary with the assurance that the probability Bill Gates is a millionaire is four times as 

likely as the probability that he is not a millionaire. The privacy specification for the two queries 

combined is thus ln(4) = 2 × ln(2) = 2𝜀 (twice the original 𝜀 we had set). In general, if the 

adversary is allowed to issue 𝑚 queries and the privacy assurance is set to 𝜀 for each query, then 

for all 𝑚𝑚 queries combined, the privacy assurance is only 𝑚𝜀 (remember that a small 𝜀 provides 

more privacy). If we wish to limit the disclosure level to 𝜀 for all 𝑚𝑚 queries combined, it would 

be necessary to set the disclosure level for each query to be (𝜀/𝑚). Dwork, A Firm Foundation for 

Private Data Analysis, supra note 19, at 92. 

 60.  See, e.g., Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 89.  

 61.  See infra Part III.E. 

 62.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91. 

 63.  See, e.g., Wu, supra note 9, at 1168–69.  

 64.  Justin Brickell & Vitaly Shmatikov, The Cost of Privacy: Destruction of Data-Mining 

Utility in Anonymized Data Publishing, in KDD ’08 PROCEEDINGS OF THE 14TH ACM SIGKDD 

INT’L CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING 70, 71 (2008) (“Sensitive 

attribute disclosure occurs when the adversary learns information about an individual's sensitive 

attribute(s). This form of privacy breach is different and in-comparable to learning whether an 

individual is included in the database, which is the focus of differential privacy.”); see also Wu, 

supra note 9, at 1121–23 (further clarifying the difference between research-based and data-

based disclosures). 
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know that Bill Gates lives in Washington.  If so, they will have to rely 

on techniques beyond differential privacy. 

II. STUNNING FAILURES IN APPLICATION 

All database query systems serve the purpose of providing 

reasonably accurate information.  Research results are the raison 

d’être for the query system in the first place.  Inaccurate responses can 

be useless.  In some cases, they can be positively harmful.  Privacy is 

trivially easy to achieve if the data producer has no minimum 

standards for response accuracy.  Responding to all queries with “0” 

would do the trick.  Yet to facilitate useful research, maintaining 

reasonable accuracy has to be a priority.  Unfortunately, differential 

privacy has great difficulty performing under most realistic conditions.  

The illustrations in this Part show that a data producer who wishes to 

comply with differential privacy will almost always have to choose 

between adding so much Laplace noise that the query results are 

ludicrous or adding so little noise that the dataset is left vulnerable to 

attack. 

There are exceptions—the Washington millionaires example 

from the previous part is one of them.  In Part III, this Article will 

explain when differential privacy can work.  But first, let us examine 

how differential privacy can quickly go off the rails.  As in most 

illustrations of differential privacy, we assume that the curator or 

administrator of the database allows for only one query to the 

database.  This assumption is completely unrealistic since thousands 

(or perhaps millions) of queries may be issued to the database.65  

When the database receives many queries, the privacy afforded is 

diminished by each individual query.66  We will consider this issue in 

more detail in Part III.  The assumption of a single query presents 

differential privacy in the best possible light.  Considering multiple 

queries means that the noise added will increase as a direct multiple 

of the number of queries, making matters much worse.67 

 

 65.  See Drew Olanoff, Zuckerberg on Building a Search Engine: Facebook Is Pretty 

Uniquely Positioned, at Some Point We’ll Do It, TECHCRUNCH (Sept. 11, 2012), 

http://techcrunch.com/2012/09/11/zuckerberg-we-have-a-team-working-on-search (stating that 

Facebook, for example, does over a billion queries a day). 

 66.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92 

(“Given any query sequence 𝑓1, … , 𝑓𝑚, 𝜀-differential privacy can be achieved by running 𝐾 with 

noise distribution Lap(∑
∆𝑓𝑖

𝜀

𝑚
𝑖=1 ) on each query, even if the queries are chosen adaptively, with 

each successive query depending on the answers to the previous queries.”). 

 67.  See infra Part III.D for a discussion of the multiple queries problem.  



2014] FOOL’S GOLD 721 

A. The Average Lithuanian Woman 

One of the most frequently cited examples to justify the need 

for differential privacy is also, in our view, one of the most misguided.  

Dwork presents this example as she contemplates the disclosure risk 

from a database that includes the heights of Lithuanian women: 

Finally, suppose that one’s true height is considered sensitive.  Given the auxiliary 

information “[Alan] Turing is two inches taller than the average Lithuanian woman,” 

access to the statistical database teaches Turing’s height.  In contrast, anyone without 

access to the database, knowing only the auxiliary information, learns much less about 

Turing’s height. 68 

The idea is that even individuals who are not represented in 

the database stand to suffer a privacy violation.69  Therefore, to set up 

the problem, we assume that (1) Alan Turing’s height is not known to 

the public; (2) the height of the average Lithuanian woman is 

available only to those who have access to the query database; and (3) 

the auxiliary information that Turing is two inches taller than the 

average Lithuanian woman is known to the adversary. 

This is an odd hypothetical.  After all, in order to create the 

auxiliary information that “Turing is two inches taller than the 

average Lithuanian woman,” the creator of the information must 

know both Turing’s height and the height of the average Lithuanian 

woman.  This would have to be Turing himself or somebody privy to 

his sensitive height information; but then, how did they know the 

height of Lithuanian women? 

Even if a data curator is determined to protect height 

information, this particular style of auxiliary information falls outside 

the set of risks that differential privacy is designed to reduce.70  The 

meat of the sensitive information is contained in the auxiliary 

information.  The auxiliary information is the disclosure—it is just 

communicated in reference to some external fact.71 

In any case, let us humor the hypothetical.  What would 

differential privacy tell the curator of a database about the height of 

Lithuanian women to do in order to protect the privacy of Alan 

Turing—and others?  Let us follow the steps laid out in Part I. 

 

 68.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90. The 

example has been repeated in other works, sometimes using Terry Gross instead of Alan Turing. 

See, e.g., Dwork & Smith, supra note 14, at 136.  

 69.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90–91. 

 70.  See Wu, supra note 9, at 1137–38. Consider the following example. Suppose Turing 

declares: “My salary is ten times the zip code of the White House.” Would publication of the 

White House’s address violate Turing’s privacy? 

 71.  See Wu, supra note 9, at 1143–44. Felix Wu analogizes to the notions of cause-in-

fact versus proximate cause. Disclosure of the external fact is a cause, but it is not a cause-in-

fact. Id. at 1137–38. 



722 VAND. J. ENT. & TECH. L. [Vol. 16:4:701 

1. Select 𝜺 

First, the curator of the database containing the height of 

Lithuanian women must decide on the value of 𝜀 (the acceptable level 

of disclosure).  The curator must make a judgment call on how far off 

the probability distributions are allowed to be when the database 

does, and does not, include a particular person.  Dwork has suggested 

that 𝜀 is often in the order of 0.01 or 0.1, “or in some cases, ln 2 or ln 

3.”72  Since the primary objective in this exercise is to prevent 

disclosure, we should use a fairly high privacy standard, setting  

𝜀 = 0.1.  (Remember, the smaller the 𝜀, the greater the noise). 

The query “What is the height of the average Lithuanian 

woman” is actually two queries rolled into one because it requires two 

different pieces of information: the number of Lithuanian women and 

their total height.  Further, since 𝜀 = 0.1 and the response involves 

two different queries, for each query, we will set 𝜀𝑞 = 0.05. 

2. Compute the Response to the Query Using the Original Data 

According to Statistics Lithuania, the population of Lithuania 

in 2012 was just over 3 million, with females accounting for 

approximately 1.6 million.73  The average height of Lithuanian women 

is 66 inches.74 

3. Compute the Global Sensitivity (∆𝒇) for the Query 

We must determine global sensitivity for both the count of 

Lithuanian women and the sum of their heights. The absence or 

presence of an individual will change the number of Lithuanian 

woman by exactly one and hence ∆𝑓 = 1.  But how about the sum of 

the height query?  The largest difference in the sum of heights 

between any two databases that differ in one record would occur when 

one database contains the tallest living person and the other does not.  

The difference in the total height between the two databases would 

equal the height of the tallest living person.  The height of the tallest 

person living in the world today is 99 inches (8’3”), so ∆𝑓 for the sum of 

the height query is 99. 

 

 

 72.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91. 

 73.  See Official Statistics Portal, Stat. Lith. (Apr. 9, 2014), http://osp.stat.gov.lt/ 

en/temines-lenteles19.  

 74.  See Average Female Height by Country, AVERAGEHEIGHT.CO, 

http://www.averageheight.co/average-female-height-by-country (last visited Feb. 5, 2014).  
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4. Generate a Random Value (Noise) from a Laplace Distribution with 

Mean = 0 and Scale Parameter 𝒃 = ∆𝒇/𝜺 

Based on the information worked out above, the Table provides 

the original answers, the noise added, and the response to a query 

operating on the entire population of Lithuanian women. 

 

Table 1—Response to Query on Average Height  

Over Database of Lithuanian Women 

𝜺𝒒 = 0.05 

 True values ∆𝑓 

Laplace Noise Noise Added Response 

Low 

(0.01) 

High 

(0.99) 
Low High 

# of 

Lithuanian 

Women 

1,603,014 1 −78 78 1,602,936 1,603,092 

Total 

Height 

(inches) 

105,798,924 99 −7,746 7,746 105,791,178 105,806,670 

Average 

Height 

(inches) 

66    65.99 66.01 

 

Because this query analyzes over one million people, the large 

𝑛 keeps the Laplace noise from drowning out the true signal.  Thus, 

the low estimate of average height is within 0.02” of the high estimate 

for average height.  Anyone who knows that Turing is 2” taller than 

the average Lithuanian woman will have no trouble concluding that 

he is 68” tall, even after the data curator adopts the precautions of 

differential privacy. 

However, the decision to adopt differential privacy to protect 

everyone (including Turing and the world’s tallest person), whether or 

not they are in the database, comes at a very high cost in other 

contexts.  What if the adversary knew that Turing was 2” taller than 

the average woman in the small Lithuanian town of Smalininkai 

(population 621, of whom 350 are women)?  Or what if the adversary 

knows Turing is 2” taller than the average employed woman in 

Smalininkai?  Now, to protect the possibility of disclosure for Turing 

(as well as the world’s tallest person), the query system must allow the 

possibility of inventing a land of 30-foot-tall women.  It also may 

produce tiny towns with people measuring less than 1” tall.  Tables 2 

and 3 display the range of results for average heights of these smaller 

subpopulations, using the same differential privacy parameters we set 

before. 
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Table 2—Response to Query on Average Height of  

Smalininkai Women Over Database of Lithuanian Women 

𝜺𝒒 = 0.05 

 
True 

values 
∆𝑓 

Laplace Noise 
Noise Added 

Response 

Low 

(0.01) 

High 

(0.99) 
Low High 

# of 

Smalininkai 

Women 

350 1 −78 78 272 428 

Total Height 

(inches) 
23,100 99 −7,746 7,746 15,354 30,846 

Average 

Height 

(inches) 

66    35.9 113.5 

 

Table 3—Response to Query on Average Height of Employed 

Smalininkai Women Over Database of Lithuanian Women 

𝜺𝒒 = 0.05 

 
True 

values 
∆𝑓 

Laplace Noise 
Noise Added 

Response 

Low 

(0.01) 

High 

(0.99) 
Low High 

# of 

Employed 

Smalininkai 

Women 

120 1 −78 78 42 198 

Total Height 

(inches) 
7,920 99 −7,746 7,746 174 15,666 

Average 

Height 

(inches) 

66    0.88 375.1 

 

Notice that the distributions of noise that the equation adds to 

the count and total heights in Tables 2 and 3 are identical to the 

distributions shown in Table 1.  This should not be surprising, since 

the shape of the noise distribution is determined solely by the values 

of 𝜀𝑞 and ∆𝑓.  These values did not change since we still have to 

protect the world’s tallest person.  However, while the noise was 

relatively small as applied to the entire female population of 

Lithuania, the same noise quickly overwhelms the true values when 

taking the averages over smaller subpopulations. 

One could rationalize that smaller subgroups need more noise 

to protect the confidential information.  However, research databases 

often rely on randomly selected subsamples of the population to avoid 

the significant costs of surveying every person.  The database applies 

the exact same distribution of noise to an unknown, random 
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subsample of the population.  So, if a world census allowed 

researchers to query average heights on a randomly selected sample of 

120 Lithuanian women, the results would look just as bizarre as the 

ones reported in Table 3. 

Matters would be much worse if we assume that the curator 

decides to respond to several hundred or thousands of queries.  The 

noise currently added is large enough to overwhelm the true answer; 

with one thousand queries, the noise added to comply with differential 

privacy standards would increase a thousand fold!75 

B. Averages of Variables With Long Tails 

Differential privacy has the potential to radically distort 

averages of variables (like height) that are normally distributed, but 

the distortion is even worse on variables like income that have a 

skew—that is, where some members of the population have values 

that are very distant from the median.  For instance, while the median 

family income in the United States is just under $53,000,76 a few 

hedge fund operators like George Soros have income exceeding $1 

billion.77 Scholars often refer to these distant values to as the “long 

tail” of the distribution. 

Booneville, Kentucky, is a small and struggling town.78  Its 

population is just over 100, and the median household income is just 

above the poverty line.79  Suppose the town decided to make a 

database available for public research as part of a new transparency 

initiative designed to inspire research on public welfare and the 

prevention of poverty.  Under normal circumstances, one might 

counsel the town to include only a random subsample of residents and 

to join forces with other similar towns so that a data user might not be 

able to discern the precise town in which the data subjects live.  There 

may be other precautions too, based on the context and nature of the 

data.  But in this hypothetical scenario, the town has opted instead to 

rely on differential privacy.  After all, one of the core strengths of 

 

 75.  See infra Part III.D for a discussion of the queries problem.  

 76.  Selected Economic Characteristics: 2007–2011 American Community Survey 5-Year 

Estimates, US Census Bureau, http://factfinder2.census.gov/faces/tableservices/jsf/pages/ 

productview.xhtml?pid=ACS_11_5YR_DP03 (last visited Jan. 26, 2014). 

 77.  Louise Story, Top Hedge Fund Managers Do Well in a Down Year, N.Y. TIMES, Mar. 

24, 2009, http://www.nytimes.com/2009/03/25/business/25hedge.html. 

 78.  See Selected Economic Characteristics: Booneville City, Kentucky, 2007–2011 

American Community Survey 5-Year Estimates, US Census Bureau, 

http://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml (search for “American 

Community Survey” and “Booneville city, Arkansas”; then show results from 2011) (last visited 

Feb. 5, 2014). 

 79.  See id. 
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differential privacy is that the methods of masking query responses 

are completely independent of the size and nature of the Booneville 

data—the town can have mathematical certainty of meeting privacy 

standards regardless of the particular features of its town.80 

What happens when a researcher queries the average income 

of Booneville residents?  In this case, income is the confidential 

variable; we do not want an adversary to be able to tell something 

about his target—either about his income or using his income—based 

on what he learns from the response to the query.  In particular, the 

town would need to ensure that the adversary would not be able to 

rule out that his target—a Booneville resident—is a billionaire.  After 

all, when large values are included in an analysis of the mean, the 

outlier has an outsized effect on the analysis.  So a reported mean that 

roughly matches the incomes of the rest of the Booneville population 

would suggest that the last person in the sample is not a billionaire.  

Also, the town might need to ensure that an adversary who knows 

everything about George Soros except where he lives is not able to rule 

out Booneville as George Soros’s hometown.  Thus, even if the highest 

income among Booneville residents is $50,000, the probability of any 

particular response coming back from the query needs to be not so far 

off from the probability that that response would come back if George 

Soros lived in Booneville.81  That is the promise of differential privacy.  

Unfortunately, this privacy promise also means that the response is 

likely to be useless. 

Now, we will work through the application following the 

instructions we provided in Part I. 

1. Select 𝜺 

First, the town must decide how much disclosure it is willing to 

tolerate and will have to allocate this disclosure among all the queries 

it issues to this database.  For simplicity we will assume that the town 

will use 𝜀 = 0.50 for this particular query.82 

 

 80.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.  

 81.  The fact that everyone knows with practical certainty that no one in the subset 

earned $1 billion is irrelevant; the response distribution should be constructed in such a manner 

that $1 billion income is feasible in this subset. See Dwork & Smith, supra note 14, at 137. 

 82.  Note that this selection is less differential privacy-protecting, and thus more utility-

preserving, than our last example. 
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2. Compute the Response to the Query Using the Original Data 

Suppose, for this illustration, the true per capita income for 

Booneville residents is $23,426 (which is the value reported by the US 

Census Bureau’s FactFinder web tool for 2007–11).83 

3. Compute the Global Sensitivity (∆𝒇) for the Query 

As we saw with the example of Lithuanian women, this query 

actually involves two separate global sensitivities (sum of income and 

count of people), but we will take a shortcut by dividing the global 

sensitivity for income by the number of data subjects responsive to the 

query.84  In this case, only 59 Booneville residents were in the 

workforce according to FactFinder.85 

When it comes to income, the global sensitivity is very large.  It 

is the difference between the highest-paid man in the world and an 

unemployed man.  For the sake of illustration, we will assume that 

the highest income is $1 billion and the lowest is $0.  Thus, the global 

sensitivity is $1 billion.86 

4. Generate a Random Value (Noise) from a Laplace Distribution with 

Mean = 0 and Scale Parameter 𝒃 =  ∆𝒇/𝜺 

Now comes the fun part—the selection of noise to add to the 

true answer ($23,426).  A Laplace distribution randomly selects noise, 

but the reason we went through all the work of determining the global 

sensitivity and the value of 𝜀 is that these two factors determine the 

distribution—the likelihood of how much noise the equation adds.  To 

satisfy differential privacy, the Laplace distribution which randomly 

selects the noise must have a standard deviation of 

√2
∆𝑓

𝑛𝜀𝑞
=  √2

1000000000

59×0.5
≈ 48 million. 

 Thus, although the true answer to the query “What is the 

average income of the inhabitants of Booneville?” is $23,426, the 

answer after the differential privacy process is very likely to be over 

 

 83.  See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.  

 84.  For the purposes of this illustration, we have added noise only to the income 

variable. Adding noise to the number of residents would have made matters worse. 

 85.  See Selected Economic Characteristics: 2007–2011 American Community Survey  

5-Year Estimates, supra note 76.  

 86.  We know that hedge fund operators like George Soros regularly take pay in excess 

of $1 billion, so our illustration is a conservative estimate of the noise that would be added by 

differential privacy processes.  
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$10 million.87  It is also very likely to come out lower than negative 

$10 million.  In fact, the chance that the query answer will be within 

$1 million of the true answer is under 3%.88 

Table 4 and Figure 3 show the Laplace distribution of noise.  

The two dotted lines represent negative $5 million and $5 million.  

The small area between the dotted lines visually represents the 

chance that the noise would fall within that range. 

 

Table 4—Distribution of Noise Added to a Query for  

Average Income Where the True Answer is $23,426 

𝜺𝒒 = 0.5, ∆𝒇 = $1 Billion 

Noise Level Noise Added 

 

Response 

(True Value + 

Noise) 

 

Very Low (0.001) −210,664,681 −$210,641,255 

First percentile (0.01) −132,610,949 −$132,587,523 

Fifth percentile (0.05) −78,053,732 −$78,030,306 

Tenth percentile (0.10) −54,557,217 −$54,533,791 

Twenty-fifth (0.25) −23,496,515 −$23,473,089 

Fiftieth (0.50) 0 $23,426 

Seventy-fifth (0.75) 23,496,515 $23,519,941 

Ninetieth (0.90) 54,557,217 $54,580,643 

Ninety-fifth (0.95) 78,053,732 $78,077,158 

Ninety-ninth (0.99) 132,610,949 $132,634,375 

Very High (0.999) 210,664,681 $210,688,107 

 

 

 87.  See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data 

Analysis, supra note 37, at 7.  

 88.  See id. at 8.  
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Figure 3—Distribution of Noise Added to a Query  

for Average Income 𝜺𝒒 = 0.5, ∆𝑓 = $1 Billion 

 
 

Table 5 shows the distribution of noise under various choices 

of𝜀.  Even if the data producer chose 1 for the value of 𝜀, a choice that 

might garner criticism for being insufficiently protective of privacy, 

the response to any query on the income variable would be swamped 

by noise. 

 

Table 5—The Probability that Laplace Noise Will  

Be Selected from Specified Ranges ∆𝒇 = $1 Billion 
 𝜀 = 0.01 𝜀 = 0.10 𝜀 = 0.50 𝜀 = 1.00 𝜀 = ln (3) 

±10,000 0.0000 0.0001 0.0003 0.0006 0.0006 

±100,000 0.0001 0.0006 0.0029 0.0059 0.0065 

±500,000 0.0003 0.0029 0.0146 0.0291 0.0319 

±1 Million 0.0006 0.0059 0.0291 0.0573 0.0628 

±5 Million 0.0029 0.0291 0.1371 0.2555 0.2768 

±10 Million 0.0059 0.0573 0.2555 0.4457 0.4770 

±100 Million 0.2555 0.9477 1.0000 1.0000 1.0000 

±1 Billion 0.4457 0.9973 1.0000 1.0000 1.0000 

 

Table 5 also reveals another important fact about differential 

privacy method; by design, the noise added to a query is entirely 

independent from the values of the database.  The Laplace noise 
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distribution is determined by global sensitivity and the choice of 𝜀, 

neither of which required the data producer to consult the database.89  

The noise is independent from the actual answer to the query.90  So 

Table 5 represents the noise that would be added not only to this 

hypothetical query involving a small town in Kentucky but to any 

analysis of income over data this size.  Therefore, if the US Census 

Bureau chose to adopt differential privacy in an online query system 

for the Current Population Survey, it too would add and subtract 

hundreds of millions in noise to protect George Soros when a user 

queried, “What is the average income for employed females over the 

age of 65 living in the South Bronx?”  Note that this applies even to 

queries about females because the last pieces of information an 

adversary might need about George Soros is that he is not an older 

female living in the Bronx. 

When it comes to the analysis of continuous, skewed variables 

(like income), differential privacy’s strict and inflexible promises force 

a data producer to select from two choices: he can either obliterate the 

data’s utility or he can give up on the type of privacy that differential 

privacy promises. 

For comparison’s sake, let us look at how the Census Bureau’s 

American FactFinder service actually reports the income of the 

residents in Booneville, Kentucky.91  According to American 

FactFinder, the average income of the 51 working individuals in 

Booneville is $21,907 and a margin of error of ±$11,247.92  For any 

realistic selection of 𝜀, this release of information by the Census 

Bureau would violate differential privacy since an adversary would be 

able to conclude that it is extremely unlikely that anyone living in 

Booneville has an income of $1 billion.  From the first line of Table 5 

above, one can see that the probability of observing a differentially 

private response within the range that the Census Bureau has 

released is infinitesimally small. 

It is hard to fault the Census Bureau for not using differential 

privacy.  After all, a little external information and knowledge of the 

world would suggest that it is extremely unlikely that a multi-

billionaire lives in a small, poor town in Kentucky.  It makes little 

sense to guard against the revelation that, as one would expect, there 

are no billionaires in Booneville at the cost of the utility of the rest of 

the dataset.  Differential privacy does not differentiate between the 

 

 89.  “Thus, our expected error magnitude is constant, independent of 𝑛.” Dwork, A Firm 

Foundation for Private Data Analysis, supra note 19, at 92. 

 90.  See id. 

 91.  See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78. 

 92.  Id. 
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many possible types of revelations.  It treats all as if they were equally 

meaningful, which leads to silly results and upside-down priorities. 

C. Tables 

Part I demonstrated that differential privacy can perform fairly 

well when queries are asked to report counts, such as the numbers of 

people who have various characteristics.  Suppose that, instead of 

querying the mean income, the data user submitted a query to create 

a histogram of income?  With count queries, the addition or deletion of 

one individual changes only a single bucket in a histogram—and by 

only 1.  Thus, the global sensitivity is 1 instead of $1 billion. 

Before we present the results, it is worth reflecting on the loss 

of utility that comes with the change of format.  The accuracy of 

simple statistics from grouped histogram data is always compromised 

by the crudeness of the categories.  Still, one might expect an 

improvement over the differential privacy responses for average 

income that we explored above. 

Table 6 shows a hypothetical histogram for Booneville, 

Kentucky, and noise that we randomly selected from a Laplace 

distribution with 𝜀 = 0.50 (as before).  This is just one realization of 

possible responses to the histogram query.  In practice, the data user 

would see only the last column of the table.  The shaded columns help 

us assess whether the last column is close enough for research 

purposes. 

 

Table 6—Example Responses to a Series of Count Queries  

about the Income of Booneville Residents 𝜺𝒒 = 0.5, ∆𝒇 = 1 

Income Group 
True 

Count 

Noise (rounded 

to the closest 

integer) 

Response 

(True 

Count + 

Noise) 

$0 to $10 Thousand 11 2 13 

$10 Thousand to $50 Thousand 40 7 47 

$50 Thousand to $100 Thousand 7 −2 5 

$100 Thousand to $500 Thousand 1 −4 −3 

$500 Thousand to $1 Million 0 −5 −5 

$1 Million to $10 Million 0 0 0 

$10 Million to $100 Million 0 3 3 

$100 Million to $1 Billion 0 0 0 

More than $1 Billion 0 5 5 
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The unshaded response column reports that there are five 

individuals whose income is higher than $1 billion and three 

individuals whose income is between $10 million and $100 million.  Of 

course, we know that the maximum income of individuals in 

Booneville city is less than $500,000, so this table steers researchers 

wildly off the mark.93  Naturally, the negative values are par for the 

course.94  They very slightly help balance out the bias from positive 

noise if the researcher decides to use the table to calculate a rough 

estimate of average income, but the correction is hardly worth the 

bother since an estimate of the average would be quite poor as it is.  A 

researcher using only the responses above would conclude that the 

average income among Booneville residents is about $44 million.95 

Why does this table perform so poorly even though the table 

from Part I, reporting the number of millionaires in Washington, 

performed so well?  Recall that the noise or, more precisely, the 

distribution that produces the noise, is independent from the true 

values in the original dataset.  It is also independent from the size of 

the database.  In both tables, the global sensitivity (∆𝑓) is 1.  

However, when working with the number of Washington millionaires, 

noise in the range of −7 to 7 does not make much of a difference 

because the true response is over 200,000.  Here, since the true 

answers are small (under 100), noise on the same scale greatly 

distorts the analysis. 

Table 7 shows the Laplace distributions for tabular data, where 

∆𝑓 = 1.  Each row displays the probability of observing noise values 

within the identified range for varying specifications of 𝜀. 

 

 93.  One option for skewed data is to set arbitrary upper and lower limits for the values. 

For the income variable, it might be suggested that the upper limit should be set at (say) $100 

thousand. For this particular query, such a truncation would eliminate the problem of very large 

values. But the truncation would frustrate research on high income earners, or on income 

inequality. For example, if the query asked for the average income of hedge fund managers, 

truncating the upper limit of income at $100 thousand would put nearly the entire data set in 

the truncated range. See J.K. Ord et al., Truncated Distributions and Measures of Income 

Inequality, 45 INDIAN J. STAT. 413, 414–15 (1983).  

 94.  See Microsoft, supra note 4, at 5. 

 95.  Assuming that the researcher sets the income in the middle of the range for each 

category, so that the 23 people earning between $0 and $10,000 are estimated to earn $5,000, the 

85 people earning between $10,000 and $50,000 are estimated to earn $30,000, etc. The 5 people 

earning in excess of $1 billion are estimated to earn $1 billion and $1. By this method, the 

researcher would reach an estimated average income over $44 million. Using the same message 

using the “True Count” column would yield a more modest average income of $35,254. We know 

that this is still quite far from the $21,907 average that the Census reports for the town. See 

Selected Economic Characteristics: Booneville City, Kentucky, supra note 78. 
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Table 7—The Probability that Laplace Noise Will Be Selected 

from Specified Ranges, for Varying Selections of 𝜺 ∆f = 1 

 0.001 0.01 0.10 0.25 0.50 𝒍𝒏(2) 1.00 𝒍𝒏(3) 5.00 

±1 0.00 0.01 0.10 0.22 0.39 0.50 0.63 0.67 0.99 

±2 0.00 0.02 0.18 0.39 0.63 0.75 0.86 0.89 1.00 

±3 0.00 0.03 0.26 0.53 0.78 0.88 0.95 0.96  

±5 0.00 0.05 0.39 0.71 0.92 0.97 0.99 1.00  

±10 0.01 0.10 0.63 0.92 0.99 1.00 1.00   

±20 0.02 0.18 0.86 0.99 1.00     

±50 0.05 0.39 0.99 1.00      

±100 0.10 0.63 1.00       

±500 0.39 0.99        

±1000 0.63 1.00        

±5000 0.99         

±10000 1.00         

 

When 𝜀 > 1, relatively little noise is added to the true answer.  

But, large 𝜀 values open the system to risk of disclosure, and the risk 

is not managed in any thoughtful way.  When 𝜀 is as large as 5 or 

higher, the risk of disclosure is so great that the system cannot fairly 

be described as a privacy-protecting one.  When 𝜀 < 0.10, the noise 

generated could be ±100.  Adding 100 or more to a query response 

might be just fine if the true response is in the order of 100,000 or 

more, but it causes chaos if the true answer is less than ten.  Table 7 

shows the distribution of noise added to count queries irrespective of 

the true answer.  Once 𝜀 is specified, the noise will be generated with 

the above stated probabilities. 

Dwork defends this as a desirable feature since small 

databases leave the data subjects more vulnerable and thus require 

proportionally more protection than larger databases.96  But this is not 

necessarily so.  Suppose that Table 6, the representative example of a 

histogram query, reports the income not from the town of Booneville, 

but from a stratified random sample of 130 Americans.  As long as the 

adversary does not have a way of knowing who was included in the 

random sample, this database would not require any more protective 

noise than a database containing the entire US population, yet 

 

 96.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91. 
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differential privacy methods would cause much more loss to its 

utility.97 

Moreover, the noise distribution is not limited to count queries.  

This noise is added in all situations for which ∆𝑓 = 1, even if the query 

demands a strict upper and lower bound for the true value.  Consider 

the query, “What is the average income tax rate for Americans?”  A 

person submitting the query would expect a reasonable response 

between 0% and 39.6% (the highest marginal tax rate), but Table 7 

shows that for any 𝜀 < 5.0, there is a high probability that the 

response will be negative or above 1, rendering it useless.  This is also 

poses a significant problem for statistical measures that must be 

interpreted within a bounded range, as we illustrate in the next 

example. 

D. Correlations 

Lest there be any doubt that differential privacy performs 

poorly under most typical research settings, consider its effects on 

correlation.  Statistical research often explores the relationships 

between variables.  Pearson’s product-moment correlation, measuring 

the strength of the linear relationship between two variables, is one of 

the most basic and essential tools to understand how various forces 

and phenomena interact and operate on one another.  Correlation 

ranges between [−1, 1] where −1 means that two variables have a 

perfectly negative relationship (an increase in 𝑋 corresponds with a 

proportional decrease in 𝑌), 0 means the two variables share no 

relationship (an increase in 𝑋 sometimes corresponds with increases 

and sometimes decreases in 𝑌), and 1 indicates a perfectly positive 

relationship (an increase in 𝑋 corresponds with a proportional 

increase in 𝑌).  In this case, the function (correlation) has clear lower 

and upper bounds—a query on correlation will always come out 

between −1 and 1. 

Suppose the Department of Education is preparing a database 

query system based on a national longitudinal study on the 

relationship between education and income.  Among other things, the 

database contains information on each data subject’s highest 

educational attainment (measured in years of qualified schooling) and 

annual income.  What happens when the Department of Education 

adopts differential privacy and applies Laplace noise to a query 

 

 97.  It also seems to contradict the work of Dinur and Nissim, who conclude that in order 

to prevent blatant non-privacy, the noise added would have to be in the order of √𝑛. Dinur & 

Nissim, supra note 23, at 206. 
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requesting the correlation between educational attainment and 

income? 

Let us work through the usual steps: 

1. Select 𝜺 

In this example, let us explore what happens to the query 

response under a range of 𝜀 running from 0.01 (relatively privacy 

protective) to 10.0 (quite lax).  As before, we will assume a single 

query of the database to avoid the need to add more noise for serial 

queries. 

2. Compute the Response to the Query Using the Original Data 

The relationship between education and income is strong.  

Expected earnings increase in lockstep as a person moves from high 

school to college to masters, doctoral, or professional degrees.98  

Assume for this exercise that the education and income data in the 

Department of Education’s database produce a correlation coefficient 

of 0.45. 

3. Compute the Global Sensitivity (∆𝒇) for the Query 

The global sensitivity requires the data curator to anticipate 

the greatest difference that the addition or subtraction of a single data 

point can make to a similar query on the same variable for any 

possible database—not just the database that the curator is preparing 

for public research.99 

For a very small sample, the addition (or subtraction) of a 

single data subject can change the correlation coefficient of two 

variables from perfectly positive correlation to a strong negative 

correlation, or vice versa—a change of nearly 2.  To see how, imagine a 

database with just two people.  Person A has had fewer than 8 years of 

formal education (no high school) and has an annual income of 

$52,000.  Person B has a professional degree and earns $70,000 each 

year.  For this small set of data, correlation between education and 

income will be 1: the more education, the more income.  Now, imagine 

what happens when we add Person C to the dataset.  Person C also 

has no formal education, but has an income of $1 million.  With these 

three data points, the correlation between income and education can 

 

 98.  Sandy Baum & Jennifer Ma, Education Pays: The Benefits of Higher Education for 

Individuals and Society, COLLEGE BOARD RESEARCH PAPER 10 (2007). 

 99.  See Part I.B (discussing the need for the data curator to mask the presence or 

absence of any entry). 
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fall below 0.  After adding Person C, it looks like on balance, less 

education will tend to increase income. 

We could construct a similar illustration where a correlation of 

+1 is converted to −1 (or something infinitely close) with the addition 

of 1 new data point, so we are working with ∆𝑓 = 2. 

4. Generate a Random Value (Noise) from a Laplace Distribution with 

Mean = 0 and Scale Parameter 𝒃 =  ∆𝒇/𝜺 

Next we randomly draw noise from the Laplace distribution 

determined by the values of global sensitivity and 𝜀.  This is where the 

process takes a turn for the worst. 

Correlation takes the range from −1 to 1.  Output outside of 

that range would be meaningless, and small changes within the range 

can have a great effect on the researcher’s interpretation.  Table 8 

reports the probability that the noise added to the true answer will be 

no higher than 1, and no lower than −1 under varying selections of 𝜀. 

 

Table 8—The Probability that Laplace Noise Will  

Fall Within [−1, 1] for Varying Selections of 𝜺 

∆𝒇 = 2 

𝜀 

Probability 

Noise Is in the 

Range 

[−1, 1] 

0.01 0.004988 

0.10 0.048771 

0.20 0.095163 

0.50 0.221199 

1.00 0.393469 

2.00 0.632121 

5.00 0.917915 

10.00 0.993262 

 

For small, privacy-protecting levels of 𝜀 (< 0.50), the noise 

added to the true answer is very likely to be so large that the query 

system’s response will be nonsense.  If the data curator selects 𝜀 ≥ 5, 

there is a decent chance the reported correlation will be within the 

range, but of course it is also very likely to misstate the relationship 

between the variables (and to say that two factors that are positively 

correlated are negatively correlated, or vice versa). 
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Figure 4 shows what the distribution of responses would be, 

assuming that the true answer (the actual correlation) is zero and 𝜀  = 

0.50.  The dotted lines show the acceptable response range [−1, 1].  

The figure illustrates that the great majority of responses would fall 

outside the acceptable range for correlation rendering the response 

completely meaningless to the user.  Many of the responses within the 

dotted lines would be very misleading to the researchers and to the 

relying public. 

 

Figure 4—Distribution of Responses to a Query  

for Correlation Where the True Answer is 0 

𝜺𝒒 = 0.5, ∆𝒇 = 2 

 
 

With noise like this, differential privacy simply cannot provide 

a workable solution for analyses of correlations or of any statistical 

measure with a strict upper and lower bound. 

The examples worked through in this Part should give a sense 

of differential privacy’s serious practical limitations.  While 

differential privacy is a technical standard, the problems that it would 

cause if adopted broadly would be profound, wide reaching, and 

devastating to research.  Nevertheless, policymakers and privacy 
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scholars are embracing differential privacy with increasing 

enthusiasm.100  This enthusiasm must be tempered.  The proponents 

of differential privacy have oversold its usefulness.  Realistically, the 

future of data privacy will rely on differential privacy only in very 

narrow circumstances or only if differential privacy is modified to the 

point of being unrecognizable to its creators. 

III. THE GOLDEN HAMMER 

The proponents of differential privacy have embraced the law 

of the instrument: When you have a hammer, everything looks like a 

nail.  The developers of differential privacy have insisted that it is a 

full-service tool that will free research from the perils of privacy risk 

in every context.  As Cynthia Dwork and her collaborators say, apply 

differential privacy “and never look back.”101 

Policymakers and legal scholars are ready to adopt differential 

privacy as a—or even the—best practice, though their enthusiasm 

reveals a lack of understanding about what differential privacy would 

do to data research.102  In one case, legal scholars jumped to the 

conclusion that Facebook employs differential privacy when it is very 

likely using a different noise-adding technique.103  This is a variation 

on the law of the instrument: When you like hammers, every tool looks 

like one. 

In this Part, we will explore why differential privacy has 

suddenly gained the attention and trust of legal scholars and 

policymakers.  Without exception, the enthusiasm for differential 

privacy stems from misinformed understanding of how the standard 

works.  This Part also explores instances where differential privacy 

will likely work well and where it will likely not. 

 

 100.  See, e.g., Chin & Klinefelter, supra note 11, at 1452–53; Ohm, supra note 10, at 

1756; Wu, supra note 9, at 1139–40; Felten, supra note 12. 

 101.  Cynthia Dwork et al., Differentially Private Marginals Release with Mutual 

Consistency and Error Independent of Sample Size, EUROSTAT WORK SESSION ON STAT. DATA 

CONFIDENTIALITY 193, 198 (2007). 

 102.  See Greengard, supra note 2, at 17; Chin & Klinefelter, supra note 11, at 1452–55. 

 103.  See Chin & Klinefelter, supra note 11, at 1422–23. Chin and Klinefelter describe an 

investigation that they conducted to assess the security practices of Facebook. Id. at 1432–45. 

Based on their analysis, the authors conclude that Facebook is likely using differential privacy, 

even though Facebook has never indicated that they are. Id. at 1422–23. Since the researchers 

submitted over 30,000 queries, almost any selection of epsilon would have required the noise for 

each query to dominate the true answer. See id. at 1436. Either Facebook is using some other 

noise-adding mechanism, or the company is implementing differential privacy incorrectly.  
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A. Misinformed Exuberance 

The examples worked through in Part II showed that 

differential privacy has serious practical limitations.  Somehow these 

problems have escaped the notice of many scholars and journalists, 

even when the drawbacks are right under their noses. 

Consider this excerpt from a Scientific American article: 

Suppose the true answer to [a query] is 157.  The differentially private algorithm will 

“add noise” to the true answer; that is, before returning an answer, it will add or 

subtract from 157 some number, chosen randomly according to a predetermined set of 

probabilities.  Thus, it might return 157, but it also might return 153, 159 or even 292.  

The person who asked the question knows which probability distribution the algorithm 

is using, so she has a rough idea of how much the true answer has likely been distorted 

(otherwise the answer the algorithm spat out would be completely useless to her).  

However, she doesn’t know which random number the algorithm actually added. 104 

This is a typical explanation and endorsement of differential 

privacy and it makes an equally typical mistake.  The author starts 

with an assumption that contorts the rest of her analysis.  The key 

here is that the reader already knows what the true answer is—157.  

It is only if the reader already knows the answer that a response like 

“159 or even 292” can seem useful.  But how would the hypothetical 

researcher, who must operate in ignorance of the true answer, react to 

a response of “159 or even 292?” 

Now consider how the query response in this hypothetical could 

be meaningful.  First, the response might be useful if the selected 𝜀 is 

large, so that the magnitude of the noise is very likely to be small.  

But the author says the response could very well be 292.  If the noise 

added spans a range of 150, 𝜀 in this case cannot be small.  We can 

rule out this possibility. 

The second possibility is that a span of 150 might still be small 

relative to the sort of numbers the researcher was expecting to 

observe.  For example, if the questioner had asked a database 

containing information on the entire US population to return the 

number of people who live in particular town in order to understand 

whether the town is big or small, then a response within 150 of the 

true value sheds some light.  As we have said before, count queries 

that happen to have very large values are suitable for differential 

privacy techniques.105  However, these are unusual conditions.  For 

most researchers, an answer that is likely to be 150 away from the 

true answer, and that allows them only to conclude things like “this is 

large-ish” or “this is probably small” will not be good enough.  After 

 

 104.  Klarreich, supra note 7. 

 105.  See supra Part II.A.  
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all, from the perspective of a researcher who does not know the true 

answer, a query response of “292” with a margin of error in excess of 

150 would have to consider that the true answer might be 442, and 

that is quite far off from the true answer, which we know to be 157. 

The Scientific American journalist assumed that the questioner 

already knew the true answer, or, at least, has a good sense of its 

ballpark.106  The experience of a researcher who already knows the 

answer makes a lousy gauge for the utility of a query system.  Instead, 

we should be concerned about the researchers who potentially do not 

know what the approximate true answer is.  After all, if the 

researcher knew the approximate answer, he would have little reason 

to use a query system that adds noise.  Scientific American thus relays 

some of the misplaced confidence of the developers of differential 

privacy. 

We take our next example from a Microsoft whitepaper titled 

Differential Privacy for Everyone.107 

A researcher wants to test whether a particular disease is more 

likely to manifest in people who have lived in certain regions.  She 

connects to her hospital’s query system that has differential privacy 

guards in place.  The researcher makes a series of queries on the 

number of patients with the disease who have lived in each of the 

towns in the suspected region.  Suppose that some of the towns have a 

large number of people with the disease, some towns have no people 

with the disease, and one town, Smallville, has a single case.  If the 

query system were to report the true answers to the researcher, the 

patient (Bob) in Smallville may be at risk.  For example, if he had very 

recently moved to the researcher’s hometown, and the researcher 

knows he is from Smallville, she might be able to put together that he 

has the disease.  The Microsoft whitepaper explains: 

To avoid this situation, the [query system] will introduce a random but small level of 

inaccuracy, or distortion, into the results it serves to the researcher. . . . 

. . . . 

Thus, the answers reported by the [query system] are accurate enough that they provide 

valuable information to the researcher, but inaccurate enough that the researcher 

cannot know if Bob’s name is or is not in the database.108 

The conclusions that Microsoft urges us to draw are 

speculative, to say the least.  There is simply no guarantee that the 

responses from the query system would lead the researcher to the 

correct approximate understanding about where the cases of the 

 

 106.  See Klarreich, supra note 7.  

 107.  See MICROSOFT, supra note 4, at 4–5. 

 108.  Id. at 5. 
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disease do and do not come from.  Whether the responses are only 

“slightly larger or smaller” will depend entirely on the data curator’s 

specification of 𝜀 and the total number of queries.109 

For good measure, let us quickly work through the hypothetical 

selecting a relatively liberal value for 𝜀 (that is, a less  

privacy-protecting choice).  Suppose 𝜀 = 𝑙𝑛(3), which is approximately 

1.0986.  Assume also that the curator of the database has determined 

that a total of 1000 simple count queries can be issued to the 

database.  Allowing a range of queries would require us to add more 

noise, so this is a realistic lower bound in terms of the distortion of 

results. 

With 𝜀 = 1.0986 and 𝑚 = 1000, we must use 𝜀𝑞 = (1.0986/1000) 

for each individual query.  As with all count queries, the most a single 

individual can influence a count query is by 1, so ∆𝑓𝑞 = 1.110 

What happens when the researcher queries the system “For 

each town located in the suspected regions, what is the number of 

patients with the disease?”  Table 9 reports the likelihood that the 

noise added to each town’s response will be within a particular range. 

 

Table 9—Distribution of Laplace Noise Within  

Specified Ranges 𝜺𝒒 = ln (3)/1000, ∆𝒇 = 1 

Noise Range Probability 

±1 0.00 

±5 0.01 

±10 0.01 

±50 0.05 

±100 0.10 

±500 0.42 

±1000 0.67 

±10000 1.00 

 

So, for Smallville, there is a very high chance—16%—that the 

response will exceed 1000, even though we know the true answer is 1.  

There is also a very high chance—again, 16%—that the response will 

be less than −1000. 

 

 109.  Remember that, because the effect on privacy of queries is cumulative, the noise 

added to each successive query must increase in order to satisfy differential privacy for any 

specific overall selection of 𝜀. See supra note 59 and accompanying text. 

 110.  The noise will be randomly selected from the distribution generated by the Laplace 

function Lap (∆𝑓𝑞  /𝜀𝑞) = Lap(910.239). 
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Now consider one of the towns “where there are a significant 

number of individuals” with the disease.  Suppose the number of 

individuals with the disease is about 100.  The response has a 45% 

chance of having a zero or negative value.  Even if the number of 

individuals with the disease in this town is 1000, the probability of 

observing a negative value response is greater than 16%.  Therefore, it 

is not obvious at all that a faithful use of differential privacy will 

provide the researcher with meaningful answers from which she could 

infer that eight towns had a number of people with the disease, and 

Smallville had either a small number or 0. 

To drive this point home, Table 10 provides just one 

realization, selected randomly from the Laplace noise distribution, for 

the eight towns and Smallville. 

 

Table 10—Example of Noise-Added Responses to  

the Smallville Hypothetical 𝜺𝒒 = ln (3)/1000, ∆𝒇 = 1 

 

Town 

True 

Answer 
Noise Response 

1 105 2893.9 2998.9 

2 80 −2840.6 −2760.6 

3 92 848.6 940.6 

4 100 4099.3 4199.3 

5 125 2145.4 2270.4 

6 103 −1607.8 −1504.8 

7 99 −814.6 −715.6 

8 85 191.3 276.3 

Smallville 1 817.3 818.3 

 

The researcher, who sees only the unshaded last column, would be 

hard-pressed to say anything about the relative prevalence of the 

disease in these nine towns.  The best the researcher could do is 

conclude that, knowing the value of 𝜀, the true responses were not 

large enough to overpower the magnitude of the noise that had to be 

added to maintain differential privacy.  The researcher could conclude 

that none of the towns had tens of thousands of cases of the disease, 

but she could not confidently say anything more specific than that. 

The only practical application of this sort is in response to 

queries involving common diseases like the flu that occur in the tens 

of thousands across the subpopulations of interest.  For a rare form of 

cancer, answers drawn from the differential privacy parameters we 

set will be useless, or worse than useless.111 

 

 111.  Astute readers may notice that the random realization reported in Table 10 is very 

similar to the output that our fictional internist was confronting in the Introduction. See supra 

note 3 and accompanying text. Indeed, we took the same error drawn here and added it to our 
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The curator could try to set the parameters differently from ours in 

order to squeeze some more utility out of the system.  The curator 

could, for example, decide that the system will only respond to a small 

number of queries so that the 𝜀 for each query could be larger.  But by 

reducing the number of queries, the curator reduces the overall value 

of the query system.112 

The Microsoft authors’ reassurance that “the answers reported 

by the DP guard are accurate enough that they provide valuable 

information to the researcher” is thoroughly unwarranted.  

Reassurances of this sort mislead lay audiences into the optimistic 

impression that differential privacy preserves data utility better than 

it does. 

By working with examples where they already know the true 

answer, the proponents of differential privacy have given the 

impression that the standard is more useful and viable than it really 

is.  Erica Klarreich, the author of the Scientific American article, 

advances the following illustration: 

To see what kind of distribution will ensure differential privacy, imagine that a prying 

questioner is trying to find out whether I am in a database.  He asks, “How many people 

named Erica Klarreich are in the database?”  Let’s say he gets an answer of 100.  

Because Erica Klarreich is such a rare name, the questioner knows that the true answer 

is almost certainly either 0 or 1, leaving two possibilities: 

(a) The answer is 0 and the algorithm added 100 in noise; or 

(b) The answer is 1 and the algorithm added 99 in noise. 

To preserve my privacy, the probability of picking 99 or 100 must be almost exactly the 

same; then the questioner will be unable to distinguish meaningfully between the two 

possibilities.113 

The assumption that “the questioner knows that the true answer is 

almost certainly either 0 or 1” turns out to be critical to understanding 

whether differential privacy is striking the right balance between 

privacy and utility.  We might be satisfied that this intrusive data 

user must ignore the response to his query because, in the trade-off 

between his curiosity and Erica Klarreich’s privacy, the better interest 

prevailed. 

 

equally fictional “true” responses, which was 20 for each year. Thus, as it turns out, this internist 

would have had little to worry about if she had known the truth—that seeing a few cases over 

the course of several weeks is par for the course. Since the internist did not know the true 

values, though, she would have had little reason to feel comforted or alarmed by the responses 

that she received. 

 112.  There are also some situations in which restricting the database to a small number 

of queries in order to reduce the magnitude of the noise can produce disclosures. For an example, 

see Cormode, supra note 2, at 1254. These disclosures are not, technically, within Dwork’s 

definition of “disclosure” motivating her differential privacy solutions.  

 113.  Klarreich, supra note 7. 
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But what if the questioner does not know the true answer must 

be 0 or 1?  Instead of “How many people named Erica Klarreich are in 

the database?” what if the query was “How many people died of 

postoperative infections last month at this hospital?”  Now, when the 

user receives the response “100,” he will either naively assume that 

the hospital must have terrible sanitary conditions, or, if he is a 

sophisticated user, he would know to ignore the results since the 

probability distribution of the noise is in the order of ±100. 

Thus, although we changed nothing about the differential 

privacy mechanism (altering only the intent of the data user, who in 

this case is not malicious), a result of “100” to a query whose true 

result is 0 or 1 is no longer satisfactory.  After all, if the true answer is 

0, we would not want the data user to worry about the conditions of 

the hospital.  But if the true result were close to 100, we would want 

the researcher to worry.  If a hospital were to create a publicly 

available query system, it would have to anticipate both types of 

queries—that is, both the intrusive “how many people named Erica 

Klarreich” query and the postoperative infections query. 

The best way to avoid the absurdities is for data curators to 

ensure that the magnitude of the noise added to a query is comparable 

to the true answer.  But context-driven addition of noise would violate 

the basic tenets of differential privacy.114  To satisfy differential 

privacy, the noise must be independent, not only of the true answer, 

but also the size of the database.115  Legal scholars and policymakers 

have overlooked this drawback. 

B. Willful Blindness to Context 

One of differential privacy’s strongest and most attractive 

claims is that it can—and in fact must—be applied without 

considering the specifics of the queried database.116  But as we saw 

with the average income example, the blindness to context has harsh 

consequences.  If databases must protect Bill Gates, George Soros, and 

other highly unusual individuals, then the curator has only two 

realistic options: give up on utility, or give up on privacy. 

When scholars and journalists provide examples of differential 

privacy in action, they invariably use tables of counts to show how it 

works.117  But statistical research often involves the analysis of 

numerical data.  Our examples show that differential privacy is 

 

 114.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91. 

 115.  See id. 

 116.  See id. 

 117.  See Klarreich, supra note 7; Chin & Klinefelter, supra note 11, at 1433–35. 
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unlikely to permit meaningful results to queries for averages and 

correlations unless the data curator selects a very high 𝜀, but in that 

case, the curator has abdicated his chance to protect privacy. 

The natural desire to avoid absurd results has led some 

supporters of differential privacy to mischaracterize, possibly even 

misunderstand, what differential privacy demands and to insist that 

the characteristics of a database, or the answer to a particular query, 

has some influence over the noise that is added.118  For example, Felix 

Wu describes differential privacy as follows: 

The amount of noise depends on the extent to which the answer to the question changes 

when any one individual’s data changes.  Thus, asking about an attribute of a single 

individual results in a very noisy answer, because the true answer could change 

completely if that individual’s information changed.  In this case, the answer given is 

designed to be so noisy that it is essentially random and meaningless.  Asking for an 

aggregate statistic about a large population, on the other hand, results in an answer 

with little noise, one which is relatively close to the true answer.119 

Contrary to Wu’s assertion, differential privacy noise is not a 

function of the breadth of the query.  Because the noise is based on 

global sensitivity, for all databases that could possibly exist, the noise 

added to any particular query response must be the same whether the 

query involves a single person or a million.  When it comes to counts 

and tabular data, the noise added to a query on a large number of 

people might be less distorting than noise of the same size added to a 

query on a small number of subjects.  But, with other analyses (like 

correlation), the distortions will be equally severe no matter the 𝑛.120  

Lest there be any doubt, Dwork herself has recently insisted, “Our 

expected error magnitude is constant, independent of 𝑛 [the number of 

data subjects responsive to a query].”121 

A white paper from Microsoft’s differential privacy research 

team makes a similar error.122  It states: 

Distortion is introduced into the answers a posteriori.  That is, the DP guard gets 

answers based on pristine data, and then mathematically decides the right amount of 

distortion that needs to be introduced, based on the type of question that was asked, on 

the size of the database itself, how much its data changes on a regular basis, etc.123 

Wu and the authors of the Microsoft paper are unwittingly 

rewriting how differential privacy works.  Wu implies that what 

matters is the influence that a particular piece of information can 

have on the particular query that has been submitted.  This would be a 

 

 118.  See, e.g., Wu, supra note 9, at 1138.  

 119.  Id. 

 120.  See supra Part II.D.  

 121.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92. 

 122.  See Microsoft, supra note 4, at 5. 

 123.  Id. 



746 VAND. J. ENT. & TECH. L. [Vol. 16:4:701 

fabulous improvement for preserving the utility of a dataset, but it 

cannot promise differential privacy because a series of queries could 

reveal changes in the magnitude of the noise that would reveal 

information about the underlying values.124  Thus, the technical 

literature on differential privacy has consistently maintained that the 

magnitude of the noise must be independent of the size of the data 

set, the magnitude of the true answer, and the type of query (except 

in assessing ∆𝑓, which requires an assessment of all possible query 

responses across the universe of possible datasets).125 

Finally, Ed Felten, Chief Technologist of the Federal Trade 

Commission, describes differential privacy as if it curbs the amount of 

error around a particular response.  He uses the following example: 

Let’s say [an adversary’s] best guess, based on all of the available medical science and 

statistics about the population generally, is that there is a 2% chance that I have 

diabetes.  Now if we give the [adversary] controlled access to my doctor’s database, via a 

method that guarantees differential privacy at the 0.01% level, then the analyst might 

be able to adjust his estimate of the odds that I have diabetes–but only by a tiny bit.  

His best estimate of the odds that I am diabetic, which was originally 2%, might go as 

low as 1.9998% or as high as 2.0002%.  The tiny difference of 0.0002% is too small to 

worry about. 

That’s differential privacy.126 

This is not differential privacy at all.  An adversary could 

query the database for the proportion of patients in the doctor’s 

database who have diabetes.  This ratio could significantly improve 

the adversary’s guess for Ed Felten’s likelihood of having diabetes.  

This is especially true if the doctor’s practice is large enough so that 

the noise does not drown out the true response.127 It is also especially 

true if Ed Felten’s doctor specializes in the treatment of diabetics.  So 

Felten’s claim can only be correct if we assume that the proportion of 

individuals with diabetes in his doctor’s practice happens to be 2%, 

just like the general public. 

Felten’s example illustrates the sort of willful blindness to 

context that comes from a threat model orientation.  By focusing 

exclusively on the adversary, Felten fails to see the consequences to 

legitimate research.  In a realistic scenario, the number of patients in 

 

 124.  Kobi Nissim et al., Smooth Sensitivity and Sampling in Private Data Analysis, in 

STOC’07 Proceedings of the 39th Annual ACM Symposium on Theory of Computing 75, 78 

(David S. Johnson & Uriel Feige eds., 2007). 

 125.  See Bhaskar et al., supra note 2, at 216 (“The amount of noise introduced in the 

[differentially private] query-response is . . . [i]ndependent of the actual data entries . . . .”). 

 126.  Felten, supra note 12. 

 127.  Recall that the differentially private noise is independent from the size of the 

database so that the reported answer approaches the true answer as the size increases.   
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the doctor’s database is likely to be a few thousand.128  A query 

system using 𝜀 = 0.0001 would have to add tremendous noise to each 

response.129  The answers are unlikely to be anywhere close to the 

true value—whether the legitimate user queries the doctor’s database 

for a count of the number of patients with diabetes or asks point 

blank “Does Ed Felten have diabetes?” The consequences to research 

are an afterthought for the proponents of differential privacy. 

The legal scholars and policymakers who endorse differential 

privacy do so only when (and because) they think it works differently 

than it really does.130  Differential privacy eschews a nuanced 

approach that takes into account the variety of disclosures relatively 

likely to occur, the underlying data, and the specifics of a particular 

query.  This “one size fits all” solution has exactly the problems that 

one would expect from a nonnuanced rule.  It behaves like Procrustes’s 

bed, cutting off some of the most useful applications of a query system 

without reflection on the costs. 

C. Expansive Definitions of Privacy 

Differential privacy is motivated by statistician Tore Dalenius’s 

definition of disclosure, which identifies any new revelation that can 

be facilitated by a research database as a reduction of privacy.131  As 

Dalenius well knew, eliminating this type of disclosure is not only 

impossible, it is not even the right goal.132  Differential privacy makes 

no differentiation between the types of auxiliary information that an 

intruder may or may not have.  Because it remains agnostic to these 

types of considerations, the assumptions about what an attacker 

might know are unrealistic and too demanding.  In order to make 

differential privacy protections manageable, data curators will be 

tempted to choose a large value for 𝜀 or to relax the standards in some 

other way.  But this will relax the privacy protections in a thoughtless 

way, divorced from context, and thus runs the risk of exposing a few 

data subjects to unnecessary risks.  Embracing too expansive a 

definition of disclosure creates the danger that curators will deviate 

from the standard without assessing which disclosures are important 
 

 128.  “The average US panel size is about 2,300.” Justin Altschuler, MD, David 

Margolius, MD, Thomas Bodenheimer, MD & Kevin Grumbach, MD, Estimating a Reasonable 

Patient Panel Size for Primary Care Physicians with Team-Based Task Delegation, 10 Annals 

Fam. Med. 396, 396 (2012). 

 129.  The 1% to 99% range of the noise would be approximately −40,000 to +40,000. 

 130.  See Wu, supra note 9, at 1137–40; Felten, supra note 12. 

 131.  Tore Dalenius, Towards a Methodology for Statistical Disclosure Control, 5 

STATISTISK TIDSKRIFT 429, 433 (1977). 

 132.  Id. at 439–40 (“It may be argued that elimination of disclosure is possible only by 

elimination of statistics.”). 
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(e.g., an increased chance of inferring that Bob has HIV) and which 

are not (e.g., a decreased chance of inferring that Bob is not a 

billionaire). 

The expansiveness of differential privacy comes from its 

anticipation of all databases in the universe.  Differential privacy 

defines privacy breach as the gap in probabilities of observing a 

particular response, not for the particular database in use, but for all 

possible datasets 𝑋 and 𝑋∗ that differ on, at most, one row.133  This is 

why we have to consider George Soros’s income when we are dealing 

with the income of the citizens of Booneville. 

The rationale for this requirement comes from the fact that we 

not only have to provide protection for the citizens of Booneville, but 

we must also prevent the response from revealing that someone is not 

a citizen of Booneville. This is true even if it is generally known that 

George Soros is not a citizen of Booneville and that Booneville does not 

tend to attract people with wealth.  Thus, what may have looked like 

an advantage of differential privacy—that it requires no assumptions 

about what adversaries already know—is actually a stumbling block.  

It causes differential privacy to obliterate accurate responses with 

noise.  By calibrating to the most extreme case (i.e., George Soros), 

differential privacy protects everyone, but only at significant cost to 

research. 

This explains why differential privacy seems to work pretty 

well for some counts of individuals but not so well for other variables.  

For counts, every person exerts the same level of influence and ∆𝑓 = 1 

regardless of who is or is not included in the database.134  But for other 

variables, such as income, the influence exerted by an outlier is very 

different than that exerted by nearly every other entry.  Attempting to 

protect George Soros’s income information adds so much noise that it 

overwhelms the information about the income of the average citizen 

(from Booneville or any other city).  Dwork obliquely acknowledges as 

much when she says, “Our techniques work best – i.e., introduce the 

least noise – when ∆𝑓 is small.”135  What is left unsaid is that when ∆𝑓 

is very large, differential privacy simply breaks down. 

Comparing two databases that differ in one record from the 

universe of all databases leads to the popularized claim of differential 

privacy “that it protects against attackers who know all but one 

 

 133.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91–92. 

 134.  See id. at 88–89. 

 135.  Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis, 

supra note 37, at 7. 
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record.”136  The negative consequences of this requirement are less 

well known.  Differential privacy provides protection in anticipation of 

the worst-case scenario, which is admirable, but impractical.  We 

could build every building as if it were Fort Knox—but at what cost? 

D. Multiple Queries Multiply the Problems 

The effect of differential privacy protections on each query is 

cumulative.137  This is one of the least discussed factors in the 

implementation of differential privacy.  Any reasonably sized 

database—such as that of a healthcare provider—is likely to be 

queried thousands of times.  For databases released by government 

agencies, such as the Census Bureau, the number of queries could 

easily reach the millions.  This is likely true for large databases held 

by Facebook, Google, and others.138  If the curator provides responses 

to a set of 𝑚 separate queries with privacy parameter 𝜀1, 𝜀2,  .  .  .  . , 𝜀𝑚, 

then the global privacy measure for the database is 𝜀 = ∑ 𝜀𝑞
𝑚
𝑞=1 , and 

thus the differential privacy risk 𝑒𝜀.139  That is, the differential 

privacy standard is the sum of all the query epsilons.140  If the curator 

wants to keep the global 𝜀 under 10, he would have to set either 𝜀𝑞 

(the 𝜀 for each query) or 𝑚 (the number of queries) to be quite small.  

In either case, this severely limits the usefulness of the database.  

Neither is desirable. 

A majority of statistical analyses, such as hypothesis testing, 

relies on at least the mean and variance—or in the case of multiple 

variables, the means and the correlations.  When every quantity is a 

“noise-added” response, the effects of large noise-addition can lead to 

meaningless, or even dangerous, conclusions. 

 

 136.  Daniel Kifer & Ashwin Machanavajjhala, No Free Lunch in Data Privacy, in 

SIGMOD ’11 Proceedings of 2011 ACM SIGMOD International Conference on Management of 

Data 193, 193 (2011). 

 137.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92. 

 138.  See Olanoff, supra note 65. 

 139.  See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private 

Data Analysis, supra note 19, at 91. 

 140.  See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private 

Data Analysis, supra note 19, at 92. Returning to Chin and Klinefelter’s analysis of responses to 

30,000+ different Facebook queries, Chin and Klinefelter conclude that Facebook is likely using a 

rounding function and a noise addition mechanism that is consistent with 𝜀𝑞 = 0.181 for each 

query. Chin & Klinefelter, supra note 11, at 1433–40. For the set of 30,000+ queries as a whole, 

this would imply that 𝜀 = (0.181 × 30000) = 5430 which translates into a privacy risk ratio of e5430 

which is so large that, for all practical purposes, it might as well be infinite. Whether the 

mistake is Chin and Klinefelter’s (for misidentifying differential privacy) or Facebook’s (for 

misapplying it), it shows a frequent, critical failure to understand that the response to every 

query contributes to the adversary’s ability to compromise the privacy of an individual, resulting 

in wildly overstated descriptions of the privacy offered by differential privacy mechanisms.  
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E. At the Same Time, Limited Definitions of Privacy 

Differential privacy ensures that an individual’s inclusion or 

exclusion from the dataset does not change the probability of receiving 

a particular query response by too much, but meeting this standard 

does not necessarily guarantee privacy in the conventional sense. 

First, differential privacy leaves the designation of 𝜀 to the 

discretion of the data curator.141  If the curator is committed both to 

differential privacy and to maintaining the utility of the data query 

system, he will be tempted to select a large 𝜀 and to allow a large 

number of queries.  If the curator selects a large 𝜀, the standard will 

be so relaxed that the benefits of differential privacy are wasted.  For 

example, suppose the curator selects 𝜀 = 10.  10 sounds like a 

reasonable enough number, but the privacy standard is actually 𝑒𝜀.  

So when 𝜀 = 10, the ratio of probabilities for a result with and without 

the inclusion of an individual can be over 22,000.  The ratio just need 

be less than e10 (about 22,026.3).142  With probabilities this different, 

the curator would have more luck protecting the privacy of the data 

subjects by adding random noise selected within some context-

appropriate bounded range.  If the 𝜀 is large, the protections offered 

are hardly worth the effort.  The nature of exponents is such that 

small differences in 𝜀 cause very large differences in privacy 

protection.  Table 11 shows the powers of e. 

 

Table 11—Differential Privacy Standards (Ratio  

of Probabilities) for Varying Selections of 𝜺 
𝜀 𝑒𝜀   𝜀 𝑒𝜀 

0.01 1.01   ln (3) 3.00 

0.05 1.05   2 7.39 

0.10 1.11   5 148.41 

0.25 1.28   10 22,026.47 

0.50 1.65   25 7.2×1010 

ln (2) 2.00   50 5.18×1021 

1.00 2.72   100 2.68×1043 

 

Let us work through a quick example of what happens when 

the curator decides to answer one thousand queries from the 

 

 141.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 88. 

 142.  Even seasoned researchers make the mistake of setting unreasonably high values 

for 𝜀. For instance, Anne-Sophie Charest sets 𝜀 = at 250, and David McClure and Jerome Reiter 

set 𝜀 =  at 1000, which offers no guarantee of privacy whatsoever. See Anne-Sophie Charest, How 

Can We Analyze Differentially-Private Synthetic Datasets?, 2 J. PRIVACY & CONFIDENTIALITY 21, 

27 (2010); David McClure & Jerome P. Reiter, Differential Privacy and Statistical Disclosure 

Risk Measures: An Investigation with Binary Synthetic Data, 5 TRANSACTIONS ON DATA PRIVACY 

535, 536 (2012).  
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Booneville City database (which may contain, in addition to income, a 

lot of other information about the citizens of Booneville).  For a single 

query, we observe that the probability of observing a response within 

±$1 million is approximately 3% (and 97% of the time it was higher 

than this range).  To be equitable, we assume that every query will be 

answered with the same level of privacy (assuring both equally 

accurate responses to all queries and equal privacy for all citizens) 

resulting in 𝜀𝑞 =  (𝜀 1000⁄ ).  This means that the noise added would 

increase thousandfold.143  With one thousand queries, the observations 

for average income over a small town would be laughably wrong.  The 

query system would provide responses within $1billion of the true 

answer about 3% of the time.  The rest of the time (the remaining 

97%), the response will be greater than $1 billion or less than negative 

$1 billion. 

Dwork occasionally underplays the importance of the selection 

of 𝜀 to guard against potential privacy-invading uses.  She states “if 

the [differentially private] database were to be consulted by an 

insurance provider before deciding whether or not to insure a given 

individual, then the presence or absence of any individual’s data in the 

database will not significantly affect his or her chance of receiving 

coverage.”144  But with a high enough 𝜀, an insurance adjustor could 

take advantage of the lax standard.  For example, suppose the 

adjustor asks, “Does Jeff Jones have a congenital heart disease?” and 𝜀 

is set to 𝑙𝑛(2).  This means that the ratio of probabilities that the 

database will give a particular response equals 2.  Thus, if Jeff Jones 

were to have the disease, it is twice as likely to observe a response 

that he has the diseases compared to the response that he does not 

have the disease.145  So when they receive a positive response, the 

insurance company may want to play the odds and decline coverage. 

The effects are worse for clusters of individuals.  Consider an 

insurance company employee who issues the query, “How many 

individuals in the Jones family of 5 have a congenital heart disease?”  

Assuming one or more of the individuals in this family does have the 

congenital heart disease, the probability of a response indicating that 

 

 143.  One of the interesting aspects of the Laplace distribution is that the noise for 𝑚 

queries is a direct multiple of the noise for one query. The Laplace inverse cumulative 

distribution function with mean zero is written as: −𝑏 × 𝑆𝑖𝑔𝑛(𝑝 − 0.5) × 𝑙𝑛 (1 − 2|𝑝 − 0.5|) where 𝑏 

is the shape parameter of the Laplace distribution and 𝑝 is a random number between 0 and 1. 

When a single query is answered, 𝑏 =  ∆𝑓 𝜀⁄  and when 𝑚 queries are answered 𝑏′ =  ∆𝑓 (𝜀 𝑚⁄ )⁄ =
 𝑚(∆𝑓 𝜀⁄ ) = 𝑚𝑏. For a given random number 𝑝, the noise using 𝑏′ is 𝑚 times the noise generated 

using 𝑏. 

 144.  Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91 

(emphasis omitted).  

 145.  See id. at 91–92. 
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one or more individuals in this family has the disease is 32 times (25) 

more likely than a negative response because differential privacy 

ensures only that each marginal individual contribute no more than a 

doubling of the probability.  For five individuals in a row, the ratio 

would double five times.  Now, the insurance adjustor is very likely to 

decline coverage for the Jones family since the chance that all of them 

don not have heart disease may be a paltry 1/33.146 

F. Difficult Application 

Because differential privacy techniques are agnostic to the 

specific underlying database, one might get the impression that they 

are easy to implement.  This is not the case. 

In order to create the appropriate Laplace noise distribution, 

the data curator must identify and assess the global sensitivity (∆𝑓) 

for every type of allowable query.147  For some statistics, such as 

counts, sums, and mean, the analysis is straightforward.  For most 

tabular data, ∆𝑓 = 1.148  Sums and means require the curator to know 

the largest values over the entire world’s population for each variable, 

but as long as they have access to some reliable descriptive 

statistics149, this is usually not too hard. 

For analyses involving more complicated statistics, 

determining global sensitivity is not an easy task.  Consider the 

illustration in which a user queries a database for the average income 

of residents in Booneville, Kentucky.  In order to compute ∆𝑓, the data 

steward will have to guess the income of the world’s highest-paid 

person.  Error has serious consequences: under-specifying ∆𝑓 would 

mean that differential privacy is not actually satisfied, but  

over-specifying ∆𝑓 will further degrade the quality of the output.  

Statistical analysis often involves estimates of important statistical 

 

 146.  Graham Cormode also provides an interesting example of a disclosure that can be 

made while satisfying differential privacy, but which is avoidable with more traditional, context-

driven privacy measures. Cormode, supra note 2, at 1256–57. 

 147.  See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92. 

 148.  Even tabular data has the potential to cause confusion. Klarreich, author of the 

Scientific American article, provides an illustration of a type of disclosure that occurs with 

genotype frequencies. Klarreich, supra note 7. Unfortunately, in this situation, it would not be 

possible to maintain the privacy parameter for each cell and the overall database at 𝜀. The data 

involves frequencies of thousands of different single nucleotide polymorphisms (SNPs) and every 

individual is represented in every SNP frequency. See id. The addition/deletion of one record will 

modify every one of the SNP frequencies. To see an attack taking advantage of these 

circumstances, see Daniel I. Jacobs et al., Leveraging Ethnic Group Incidence Variation to 

Investigate Genetic Susceptibility to Glioma: A Novel Candidate SNP Approach, 3 FRONTIERS IN 

GENETICS 203, 203 (2012). 

 149.  Hopefully the curator’s source for learning the global range does not employ 

differential privacy. 
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relationships between numerical variables such as variance, 

regression coefficients, coefficient of determination, or eigen-values.  

For these types of queries, determining global sensitivity will be very 

challenging. Correctly choosing global sensitivity has drastic 

consequences to utility—as we saw with the correlation example in 

Part II. 

Considering all of these limitations together, we must 

circumscribe the practical applications for pure differential privacy to 

the situations in which count queries have true answers that are very 

large. Unless we alter the core purposes and definitions of differential 

privacy, statisticians and policymakers should ignore the hype. 

CONCLUSIONS 

Differential privacy faces a hard choice.  It must either recede 

into the ash heap of theory or surrender its claim to uniqueness and 

supremacy.  In its pure form, differential privacy has no chance of 

broad application.  However, recent research by its proponents shows 

a willingness to relax the differential privacy standard in order to 

complex queries.  Two such relaxations are often used. 

The first, proposed by Dwork herself, requires that the 

probability of seeing a response with a particular subject remain 

within some factor of the probability of the same response without 

that subject plus some extra allowance.150  The problem with this 

modification is that there is no upper bound on the actual privacy 

afforded by this standard.151  In some situations, this allowance may 

be appropriate, but it would require the judgment of a privacy expert 

based on context—the very thing differential privacy had sought to 

avoid. 

Ashwin Machanavajjhala developed another alternative for the 

US Census Bureau’s On the Map application.152  This relaxation of 

differential privacy allows curators to satisfy a modified differential 

privacy standard while usually meeting strict differential privacy.  For 

some predesignated percentage of responses, the differential privacy 

 

 150.  See Dwork & Smith, supra note 14, at 139. Mathematically, the relationship looks 

like this: 

 𝑃(𝑅 = 𝑟|𝑋) ≤  𝑒𝜀 × 𝑃(𝑅 = 𝑟|𝑋∗) +  𝛿 where 𝛿 is small. 

 151.  The extent to which actual probability ratio is different from the ratio that includes 

or excludes a data subject is bounded by the 𝑒𝜀 +
𝛿

𝑃(𝑅=𝑟|𝑋∗)
, but when 𝑃(𝑅 = 𝑟|𝑋∗) is very small (say 

0.00001) and 𝛿 = 0.01, the privacy ratio can exceed differential privacy standards by 1000. Even 

though 𝛿 is small, the risk of disclosure can be very large. 

 152.  Ashwin Machanavajjhala et al., Privacy: Theory Meets Practice on the Map, in ICDE 

’08 PROCEEDINGS OF THE 2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING 

277, 283 (2008). 
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standard can be broken.153  This relaxation also undermines the 

promise of privacy.154  In the situations where differential privacy is 

not satisfied, there is no upper bound on the risk of disclosing 

sensitive information to a malicious user.  However, this may be fine if 

the curator crafts the deviations in a thoughtful way.  Nonetheless, 

the data curator would need to resort to judgment and context. 

This progression by the differential privacy researchers to a 

relaxed form is odd, given their view that historical definitions of 

privacy in the statistical literature lack rigor.  The differential privacy 

community roundly dismisses traditional mechanisms for not offering 

strong privacy guarantees,155 but the old methods will often satisfy the 

proposed relaxed forms of differential privacy as On the Map clearly 

illustrates.156 

As differential privacy experts grapple with the messy 

problems of creating a system that gives researchers meaningful 

responses, while also providing meaningful disclosure  

prevention—albeit not differential privacy—they have come back to 

earth and rejoined the rest of the disclosure risk researchers who toil 

with the tension between utility and privacy.157  In its strictest form, 

differential privacy is a farce. In its most relaxed form, it is no 

different, and no better, than other methods.158 

Legal scholars and policymakers should resist the temptation 

to see differential privacy as a panacea, and to reject old disclosure 

prevention methods as inadequate.  Adopting differential privacy as a 

regulatory best practice or mandate would be the end of research as 

we know it.  The answers to basic statistical questions—averages and 

correlations—would be gibberish, and the standard would be very 

difficult to apply to regression and other complex analyses.  

 

 153.  See id. at 280–81. 

 154.  For example, the authors go on to propose a relaxation of differential privacy that 

satisfies differential privacy albeit with 𝜀 = 8.6, which implies a privacy risk ratio of 𝑒8.6 = 

5431.66. Id. at 284. This implies that, based on the responses (or in this case released data), we 

can conclude the presence of an individual has probability that can be 5431.66 times higher than 

the absence of an individual. 

 155.  See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data 

Analysis, supra note 37, at 1 (criticizing disclosure prevention mechanisms for being syntactic 

and ad hoc). 

 156.  See Machanavajjhala et al., supra note 152, at 277. 

 157.  See, e.g., Bhaskar et al., supra note 2, at 216 (“While the form of our guarantee is 

similar to DP, where the privacy comes from is very different, and is based on: 1) A statistical 

(generative) model assumption for the database, 2) Restrictions on the kinds of auxiliary 

information available to the adversary.”). 

 158.  For example, differential privacy offers no greater security against Dinur-Nissim 

“blatant non-privacy” unless the data curator strictly limits the number of queries that can be 

issued to the system. Cf. Dinur & Nissim, supra note 23, at 203–04, 206. Other noise-adding 

approaches, too, can avoid the Dinur-Nissim results by limiting the number of queries. See supra 

note 28 and accompanying text. 
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Differential privacy would also forbid public microdata releases—a 

valuable public information resource.159  Lest we end up in a land with 

a negative population of 30 foot-tall people earning an average income 

of $23.8 million per year, the legal and policy community must curb its 

enthusiasm for this trendy theory. 

 

 

 

 159.  See Barbara J. Evans, Much Ado About Data Ownership, 25 HARV. J.L. & TECH. 69, 

76, 94 (2011) (discussing the value of compiling patient metadata for research). 


